

Construction and First Beam-tests of a Prototype Silicon-Tungsten High Granularity Calorimeter for CMS at HL-LHC

CMS Calorimeter Endcap

Calorimeter endcap needs replacement for HL-LHC (3000/fb)

• High radiation dose (150Mrad, 10¹⁶n/cm²) and high pile-up conditions (200 PU)

Zoltan Gecse

The CMS HGC Design

System divided into three parts:

- EE Silicon with tungsten absorber
 28 sampling layers 25 Xo + ~1.3 λ
- FH Silicon with brass or steel absorber
 12 sampling layers 3.5 λ
- BH Scintillator with brass or steel absorber 11 layers 5.5 λ

• EE and FH are maintained at – 30C, BH is at room temperature

- Hexagonal Si-sensors built into modules
- Modules with a W/Cu base plate and PCB readout board.
- Modules mounted on copper cooling plates to make wedge-shaped cassettes
- Cassettes inserted into absorber structures at integration site (CERN)

cds.cern.ch/record/2020886/files/LHCC-P-008.pdf

Sensor -Adhesive layer -Kapton w/ Au layer for bias Adhesive layer

Adhesive layer

Wirebond protector

Printed circuit board

Readout chips

2-sensor baseplate

Dual 6" or single 8" modules

Key Parameters and Performance

• Key parameters:

- 593 m² of silicon
- 6M ch, 0.5 or 1 cm² cell-size
- 21,660 modules (8" or 2x6" sensors)
- 92,000 front-end ASICS.
- Power at end of life 115 kW

Test Beam Plans and Goals

Fermilab	Single layer with 6X ₀ absorber	March 25 - April 5	Complete Construction and results shown today
Fermilab	up to 28 layers with 25X ₀ absorber	May 18 - 31	
CERN (SPS)	28 layers with 25X ₀ absorber	Aug 31 - Sep 7	
CERN (SPS)	28-layer ECAL + up to 12-layer HCAL	Nov 9 - 14	

•Goals:

- Measure energy response
- Measure time and position resolutions
- Compare to simulation
- Test the proposed design of compact module with deep wire-bonding

Silicon Sensors

Prototype sensors from Hamamatsu

- 6" wafers, 200 um active thickness (100 um and 300 um will be used later)
- physical thickness 320 um
- 128 channels of 1.1cm² area

300 µm	200 µm	100 µm
3	20	100
6×10^{14}	$2.5 imes 10^{15}$	1×10^{16}
$R > 120 \mathrm{cm}$	$120 > R > 75 \mathrm{cm}$	$R < 75 \mathrm{cm}$
$R > 100 \rm{cm}$	$100 > R > 60 \mathrm{cm}$	$R < 60 \mathrm{cm}$
290	203	96
1.05	1.05	0.53
40	60	60
13.7	7.0	3.5
6.5	2.7	1.7
	$300 \mu\text{m}$ $3 \\ 6 \times 10^{14}$ $R > 120 \text{cm}$ $R > 100 \text{cm}$ 290 1.05 40 13.7 6.5	$\begin{array}{c ccc} 300 \mu \mathrm{m} & 200 \mu \mathrm{m} \\ \hline 3 & 20 \\ 6 \times 10^{14} & 2.5 \times 10^{15} \\ R > 120 \mathrm{cm} & 120 > R > 75 \mathrm{cm} \\ R > 100 \mathrm{cm} & 100 > R > 60 \mathrm{cm} \\ 290 & 203 \\ 1.05 & 1.05 \\ 40 & 60 \\ 13.7 & 7.0 \\ 6.5 & 2.7 \end{array}$

cds.cern.ch/record/2020886/files/LHCC-P-008.pdf

Sensor Testing

- Break down voltage > 900V
- Leakage currents 10-100 nA per channel
- Depletion voltage 90 V
- Measured capacitance of full hexagons is 70 pF, which includes ~10pF of strain capacitance of test stand

Module Assembly

Wire Bonding

~ 700 wire bonds on a single module!

Mechanics and Cooling

Hanging file design for flexible insertion of absorbers and modules on cooling plates

20 cm

I)A(,

daughter board

with Artix FPGA

FPGA

- XDAQ provides Run Control
- Data Quality Monitoring
- Scales with multiple detectors

- SKIROC ASIC FE chips, designed for ILC and used as starting point
- 200 ns signal rise time • 12 bit ADC

- Commercial ZedBoard: FPGA and CPU running Linux in a single CHIP
- Allows easy transfer of data from **FPGAs to Computers**
- Scales from 1 to 28 FMC-IO boards

Installed HGC Prototype, FNAL March 23

Pedestal Subtraction

- Pedestal runs (no beam) are used to estimate the per channel pedestals
- Observed common mode noise in addition to per channel
 noise

 Fit pedestal subtracted distribution of ADC counts per event to determine common mode noise and subtract it

120 GeV Proton, Event Display

ADC count is proportional to energy deposited in Si

Shown values are after pedestal subtraction

• Most 120 GeV protons appear as MIP, only 0.3λ of absorber

120 GeV Protons as Proxy to MIP

120 GeV protons is the primary beam at Fermilab Test Beam

 Muons are available as small fraction of secondary beam, less collimated and requires selection

Using 120 GeV protons as a proxy to MIP and calibration

- Plot shows distribution of ADC counts for the cell in the beam line
- Run contains background triggers (blue peak) and proton triggers (read peak)
- Fit Gaussian + Landau convoluted with Gaussian of same width
- Define 1 MIP = 8.13 ADC

Simulation of 120 GeV Protons

Thickness (mm)	Material	Notes		
Front (beam side) of				
4.2	"W"			
6.0	"Air"			
4.2	"W"			
6.0	"Air"			
4.2	"W"			
6.0	"Air"			
2.1	"W"			
6.0	"Air"			
2.1	"W"			
6.0	"Air"			
2.1	"W"			
3.0	"Air"			
6.0	"Cu"			
.1.2	"WCu"			
0.01	"Air"	kapton		
0.12	"Si"			
0.1	"Si"	depletion zone		
0.1	"Si"	depletion zone		

Standalone Geant 4 simulation

 120 GeV proton gun shooting at the material budget of the prototype

•MPV of Landau fit: 50.9 keV, defines 1 MIP as in test beam data

32 GeV e⁻ Event Display

- Event display of an electron candidate
- The pedestals have been subtracted
- Size of cluster ~ 2 cm radius

32 GeV e⁻ in Simulation

- Shower evolution in simulation
- Event highlights the shower has a dense core
- electrons are in blue, photons are in red
 - particles below 100 MeV are not shown
- The size of shower is similar to observed one in test beam

Response to 32GeV e⁻ at 6 X₀

After pedestal subtraction, all cells summed up in the event

 Preliminary results show 8% agreement between test beam measurements and simulation

Conclusions and Next Steps

- Successfully constructed and operated the first HGC module in the Fermilab Test Beam
 - Assembled the module stack according to the technical proposal
 - Verified wire bonding capability of PCB to sensor with deep access wire bonder
- Results are within 8% of simulations
- Next, building a prototype with up to 28 Si layers for the Fermilab May beam test
 - Collect Test Beam data, analyze and compare performance to simulations
- CERN Test Beams are planning large-scale tests
- 28 ECAL + 12 HCAL prototype is especially challenging due to large number of modules (112) / channels (14000)
 - Will use faster SKIROC-CMS ASIC
 - Explore constant term
 - Perform timing studies

