

Northeastern University

Energy Reconstruction and Electron & Photon Performances with the CMS ECAL in Run II

RAFAEL TEIXEIRA DE LIMA, ON BEHALF OF THE CMS COLLABORATION

XVIIth International Conference on Calorimetry in Particle Physics May 15 - 20, 2016, Daegu, Korea (South)

ELECTROMAGNETIC CALORIMETRY AT THE LHC

OUTLINE

CMS ELECTROMAGNETIC CALORIMETER (ECAL)

ECAL Endcap

Preshower

ECAL Characteristics

Barrel (EB)	lηl < 1.48	61200 PbWO ₄ Crystals	~26X ₀
Endcap (EE)	1.48 < lηl < 3.0	14648 PbWO ₄ Crystals	~25X ₀
Preshower	1.65 < lηl < 2.6	137200 Pb/Si strips	~3X ₀

CMS ECAL Must Provide:

- Precise energy reconstruction resolution
- Precise position resolution for reconstructed deposits
- Fast and efficient readout for online selection (DAQ & Trigger)

ECAL CRYSTAL

grown in ingot

PbWO₄ Crystals have **low light output** and must work **under a 3.8T field**: challenge for readout

Barrel:

Avalanche photodiodes (APD)

- Two 5x5 mm² APDs/crystal
- Gain: 50
- Temperature dependence:
 -2.4%/^OC (precise temperature control: <

0.03/0.08 oC in EB/EE)

Endcap:

Vacuum phototriodes (VPT)

- Active area ~ 280 mm²/ crystal
- Gain 8 10 at 4T
- More radiation resistant than
- Si diodes (with UV glass

window)

CMS

LHC, CMS AND ECAL@RUN II

LHC

- 6.5 TeV/beam
- 25ns bunch spacing
- 2015: ~10 interactions per bunch crossing
- 2016: projected ~40 int. per bunch crossing

CMS

- New luminosity detectors
- Upgraded L1 calorimeter trigger
- Upgraded data acquisition (DAQ) HW
- Among others...

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

ECAL

- Link between ECAL
 DAQ and calorimeter
 trigger upgraded
 (optical)
- DAQ/Trigger Software upgrades
- New online pulse shape reconstruction

RECONSTRUCTING ENERGY WITH ECAL

Online Pulse Shape Reconstruction

New in Run II!

Multifit Reconstruction

- Online pulse reconstruction method must be resistant to out-of-time (OOT) pile up
- Solution: pulse shape is a sum of one in-time pulse plus OOT pulses

- Up to 9 OOT pulses (one per time sample)
- Minimize χ^2 distribution for best description of the in-time shape
- Pulse shapes extracted from LHC isolated bunches in 2015 (no outof-time pile up)

ECAL CRYSTAL RESPONSE MONITORING

Laser Monitoring

- ECAL crystals change response due to radiation exposure (time dependent): change in crystal transparency and VPT response in endcaps
- Response is **monitored with a laser** system injecting light in every ECAL crystal
- PbWO₄ crystals partially recover during periods with no exposure
- Monitoring corrections obtained/ applied promptly (~48h)
- Stability: interpolate 2nd of 3 consecutive readings << required 0.2%

Effect of monitoring corrections by comparing energy of electron reconstructed by ECAL (E) and tracker (p)

Rafael Teixeira de Lima (NEU) - CALOR 2016, Daegu - South Korea

0

date (day/month)

Relative Calibration of Single Channel Response

Intercalibration (IC)

- Equalizes the response of each single crystal to the deposited energy
 - Constants are normalized not to interfere with absolute scale

Intercalibration strategy same as in Run I

Method	Description	Timescale	Run I Precision (20 fb ⁻¹)
φ-symmetry	Energy flux around φ rings (constant η) should be uniform - IC corrects for non- uniformity	~days	Barrel: <3% Endcap: < 10%
⁰ /η→γγ	In a ϕ ring, use IC to improve M($\gamma\gamma$) resolution for π^0 and η resonances	~months	Barrel: <1.5% Endcap: < 10%
E/p	Compare isolated electron energy from ECAL and Tracker, calculate IC to correct discrepancies	statistically limited	Barrel: <2% Endcap: < 10%

Absolute Calibration and η Scale

Calibration with $Z \rightarrow ee$

- **Electrons from Z→ee** events are used to calibrate the **ŋ** dependence of the energy reconstruction and its absolute scale
- The Z peak is used to fix the overall absolute calibration (ADC to GeV), matching data to a detailed simulation of the detector
- Z peaks reconstructed with **electrons in a single φ ring** are used to correct the relative scale between different η regions

0T: no energy loss in reconstruction due to bremsstrahlung \rightarrow better resolution

CLUSTERING RECONSTRUCTION AND CORRECTIONS

Cluster Corrections

- Large amount of material before ECAL - high probability of bremsstrahlung emission for electrons and conversion for photons
- Clustering algorithm gathers clusters of energy deposit into superclusters to recover that information
- Supercluster's energy is corrected following a multivariate approach see J. Bendavid's talk

ECAL ENERGY RESOLUTION WITH 2015 DATA@3.8T

Large improvement by recalculating calibration with 2015 data (winter re-reconstruction) with respect to initial calibration (prompt) with Run I values for intercalibration/calibration constants

Current resolution is close to what is expected after calibration with 20 fb⁻¹ of data

1.5

2.5

Supercluster I n I

ENERGY RESOLUTION FOR HIGH ENERGY PHOTONS

- Impact of recalibration also important for high energy photons
- Possible saturation effects corrected with multivariate approach:
 - Saturation impact on energy scale < 2%
- Data/MC energy corrections stable to 0.5% (0.7%) for photons up to 150 GeV in barrel

(13 TeV, 3.8T)

EBEE

540

560

m_{vv} (GeV)

480

500

520

SUMMARY

- The CMS Electromagnetic Calorimeter has performed well with 2015 data of the LHC Run II
- New online reconstruction algorithm in place to mitigate the expected ~40 PU scenario in 2016
- Energy resolution, calibrated with 2.5 fb⁻¹ of 2015 data, is close to expected value with 20 fb⁻¹
 - $\sigma_E/E < 2\%$ (barrel central region)
- ECAL (and preshower) is currently fully operational and taking 2016 data!

THANKS!