CMS Calorimeter Trigger for LHC Run II

Dr. Aaron Bundock

Imperial College London

CALOR 2016

17th May 2016

On behalf of the CMS Calorimeter Trigger Project:

R. Aggleton^h, L. Apanasevichⁱ, M. Baber^c, F. Ball¹, R. Barbieri^e, F. Beaudette^d, J. Berryhill^b, J. Brooke^h, A. Bundock^c, L. Cadamuro^d, I. A. Cali^e, R. Cavanaugh^{b,i}, M. Cepeda^k, M. Citron^c, S. Dasu^k, L. Dodd^k, T. Durkin^g, A. Elwood^c, R. Forbes^k, C. Fountas^j, T. Gorski^k, M. Guilbaud^f, G. Hall^c, K. Harder^g, S. Harper^g, G. Iles^c, G. M. Innocenti^e, P. Klabbers^k, B. Kreis^b, C. Laner^c, Y.-J. Lee^e, A. Levine^k, W. Li^f, J. Marrouche^a, L. Mastrolorenzo^d, K. Mishra^b, D. Newbold^h, M. Northup^f, I. Ojalvo^k, S. Paramesvaran^h, B. Penning^c, R. Rivera^b, C. Roland^e, T. Romanteau^d, A. Rose^c, T. Ruggles^k, J. B. Sauvan^d, C. Shepherd-Themistocleous^g, D. Smith^h, N. Smith^k, W. Smith^k, T. Strebler^d, A. Svetek^k, A. Tapper^c, A. Thea^g, J. Tikalsky^k, B. Tran^f, L. Uplegger^b, M. Vicente^k, N. Wardle^a, T. Williams^g, B. Wyslouch^e, A. Zabi^d, J. Zhangⁱ

^a CERN

^bFermi National Accelerator Laboratory ^cImperial College London ^dLaboratoire Leprince-Ringuet ^eMassachusetts Institute of Technology ^fRice University ^gRutherford Appleton Laboratory ^hUniversity of Bristol ⁱUniversity of Illinois at Chicago ^jUniversity of Ioannina ^kUniversity of Wisconsin

- Large Hadron Collider and the CMS Detector
- CMS Level 1 Calorimeter Trigger
- Algorithms and Validation
- Calorimeter Trigger Performance
- Summary

Large Hadron Collider and the CMS Detector
GMS Laval 1 Galorimatar Triggar
Algorithms and Validation
Galorimatar Triggar Parformance
Summary

Large Hadron Collider

- Proton-proton collider with design centre-of-mass energy of 14 TeV
- 27km ring of superconducting magnets at 8.3 T, cooled to -271 °C
- 8 resonant radio-frequency cavities accelerate each proton beam
- 10¹¹ protons/bunch, 25 ns bunch spacing, 2808 bunches/beam
- Designed to produce instantaneous luminosity of 10³⁴ cm⁻² s⁻¹
- All four experiments produce data rate of ~ 700 MB/s when running

 Built to test Standard Model, perform searches for Higgs (done!), SUSY, dark matter, extra dimensions, and investigate mysteries of gravity and matter antimatter asymmetry

Compact Muon Solenoid Experiment

Total weight **Overall diameter Overall length** Magnetic field

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T

HADRON CALORIMETER (HCAL) Brass + plastic scintillator ~7k channels

~2k channels

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip & 432 Resistive Plate Chambers

MUON CHIAMIBIEIRS

Compact Muon Solenoid Experiment

- General purpose detector at the LHC
- Built around huge solenoid magnet
 - cylindrical coil of superconducting cable
 - produces field of 3.8 T
 - field confined by steel yoke
- 14,000 tonnes, built above ground, reassembled underground in 15 sections
- 22m long, 15m diameter

CMS

3,800 collaborators from 200 institutes

Why do we need a trigger?

- Too much data (~ 1 PB/s) from detectors to save all events to disk: trigger on interesting events only
- Trigger must very quickly (~ 3 µs) construct physics objects (jet, egamma, tau) from calorimeter data
- Fast hardware triggers built from FPGAs contain complex identification algorithms
- Global trigger contains various 'menus' to provide manageable rate of interesting events to HLT

Electromagnetic Calorimeter

- Scintillating crystal calorimeter: contains almost all energy of electrons and photons
- 80,000 PbWO4 crystals: high density, small Molière radius, short rad length, fast scintillator
- 22mm * 22 mm front face, 23 cm length (= 26 radiation lengths)
- Equipped with avalanche photo-diodes
- Scintillation mechanism and uniformity of light yield unaffected by radiation damage
- Transparency of crystals is affected by radiation through formation of colour centres
 - Injection pulse monitoring system continuously monitors
 optical transmission

CM

Hadronic Calorimeter

- Barrel and endcap (HBHE): sampling calorimeters built from 50mm thick copper absorber plates interleaved with 4mm thick plastic scintillator tiles
- Blue-violet light emission in tiles absorbed by wave-shifting fibres that fluoresce in green
- HB not deep enough to contain full showers: additional scintillator layers (HOB) outside of solenoid
- Full radiation length of HB + HOB around 11 absorption lengths
- Hermetic coverage to $|\eta| < 5$ required for good missing energy resolution
- Two forward hadronic calorimeters (HF)
 - Harsh radiation field: built from steel absorbers and quartz scintillator
 - Jet energies measured from Cerenkov light: excellent position resolution

> Large Hadron Gollider and the GMS Detector

- CMS Level 1 Calorimeter Trigger
- > Algorithms and Validation
- > Calorimeter Trigger Performance
- > Summary

Level 1 Calorimeter Trigger: Legacy

<u>ER</u>N

- Trigger primitives sent from ECAL & HCAL to RCT
- EM candidates and regional energies sent to GCT
- Each trigger card processes a slice of the calorimeter
 - Data has to be sent between cards to process overlap regions

L1 Calo Trigger: Upgrade Motivation

Run II:

CMS

- L1 trigger must support physics program in Run II that allows for TeV scale searches whilst maintaining sensitivity for electroweak scale physics
- LHC center-of-mass energy increased to 13 TeV
- Pileup increased from ~20 to ~50 interactions per crossing
- Decreased bunch spacing from 50ns to 25ns
- Instantaneous luminosity tripled to over 2 × 10³⁴ cm⁻² s⁻¹
 - Trigger rates in Run II rise by around a factor six for same thresholds applied in 2012 if no improvements to the existing trigger system
- → 2016 Calorimeter trigger upgrade:
- Significantly improved calo resolution available for object ID
- Improved electromagnetic object isolation using calorimeter energy distributions with pile-up subtraction
- Improved jet finding with pile-up subtraction
- Improved hadronic tau identification within a smaller fiducial area
- Improved global trigger menu with more triggers and more sophisticated logical combinations of input objects
- Flexible and scalable to accommodate uncertain physics program (NEW PHYSICS??) and future upgrades to the experiment

Legacy resolution

Upgrade resolution

CMS

L1 Calorimeter Trigger Upgrade: Overview

CALOR 2016

- In upgraded calorimeter trigger, Layer-1 pre-processors receive trigger primitives
- Fan out full detector data for one bunch crossing to one main processor
- Time-multiplexed trigger: full detector data from ECAL and HCAL processed in a single MP!

Master Processor

Master Processor Virtex 7

- Main workhorse for L1 calo trigger upgrade
- Also used in BMTF, uGMT, uGT
- 1.5 Tb/s signal processor board
- Xilinx XC7VX690T FPGA
- 72 Tx + 72 Rx links @ 10 Gb/s
- Avago MiniPOD embedded optics
- uTCA form factor

CMS

- GbE, AMC13/TTC/TTS, PCIe, SAS, SATA, SRIO backplane links
- AVR UC3A3256 microcontroller
- MicroSD for FPGA booting
 - Used as firmware repository

CALOR 2016

Dr. Aaron Bundock

- > Large Hadron Gollider and the GMS Detector
- > CMS Laval 1 Galorimatar Triggar
- Algorithms and Validation
- > Calorimeter Trigger Performance
- Summary

Firmware Architecture

- Modular firmware design
 - split into algorithm and infrastructure
 - allows independent development
- High resource usage due to complex algorithms
- A lot of care has to be taken with timing constraints and clock distribution!
- Algorithms clocked at 240 MHz, pipelined in η slices

Jet Algorithm

>	>	>	>	>	>	>	>	>	•
≥	>	>	>	>	>	>	>	>	
≥	≥	>	>	>	>	>	>	>	
≥	≥	≥	>	>	>	>	>	>	
≥	≥	≥	≥		>	>	>	>	
≥	≥	≥	≥	≥	≥	>	>	>	•
≥	≥	≥	≥	≥	≥	≥	>	>	•
≥	≥	≥	≥	≥	≥	≥	≥	>	
≥	≥	≥	≥	≥	≥	≥	≥	≥	

- New trigger architecture provides full trigger tower (TT) resolution
 - improved energy and position resolution
 - flexibility to define different jet sizes
 - multiple pile-up estimation algorithms uawd for pileup subtraction
- 9x9 sliding-window algorithm centred on TT with local max E_T (jet seed)
- Jet E_T = sum of TT E_T in the 9x9 sliding window
- Jet position defined by η, ϕ position of local maximum (jet seed)
- Inequality mask: avoid self veto & double counting of energy deposits
- 'Chunky donut' pileup subtraction applied to jets
 - Total E_T in 3x9 TT rectangle on each side of the jet is determined
 - 3 lowest energy sides used to determine pile-up energy density
 - this value is then scaled to the area of the jet and subtracted from the individual jet E_T
- Testing with minimum-bias MC shows this energy density is a good estimate of pile-up

Jet Algorithm Validation

Comparison between jets found by L1 trigger algorithm and jets found by offline Anti-Kt jet finding algorithm in software (with R=0.4) in ttbar MC events

CMS

19

EGamma Algorithm

- Electrons and photons reconstructed in FPGA from clusters of calorimeter towers
- Cutting edge FPGA resources allow for advanced clustering techniques with variety of shapes
- Electrons and photons also have pileup subtraction for better energy measurements at Level 1
- More info on electrons and photons in the CMS Level 1 trigger in talk from <u>T. Strebler</u> later today

Tau Algorithm

 $F_{L} (ev) = CaL + HCAL - r footprint 0 < n < 1.0$

CN

 cluster seed
 TT region used to build the cluster
 Initial cluster building region around the seed (Eseed > thresh)
 a subset of the TT is associated into a "cluster", different shapes can result (a few examples shown)

- Full trigger tower (TT) granularity exploited using dynamic clustering technique
- ECAL + HCAL energy used
- Two clusters can be merged
 - Criteria based on relative neighbour position to better reconstruct multi particles hadronic tau decays
 - ~85% isolated clusters, ~15% merged clusters
- Isolation energy is computed as energy in a 5x9 window around cluster seed, minus L1 *τ* candidate energy and compared to a threshold
 - Threshold depends on PU, $\eta(\tau)$, $E_t(\tau)$

Firmware vs. Emulation: Jets

- Level 1 jet upgraded algorithm firmware output distributions for pT , η , and ϕ
- Produced by running ttbar MC events through firmware algorithms on MP7
- Results are compared to the expected outputs from the simulation
- Excellent agreement shows that the algorithms are very well understood

- Comparison of simulation and hardware results for Level-1 Trigger jet energy sums
- Produced by running ttbar MC sample through firmware algorithms on MP7
- Distributions show scalar (H_T) and vector (H_T^{miss}) sums of all jets found in hardware units
- Excellent agreement observed between hardware and simulation

Firmware vs. Emulation: EGamma

- Level 1 e/ γ upgraded algorithm firmware output distributions for pT , η , and ϕ
- Produced by running Z→ee MC events through firmware algorithms
- Results are compared to the expected outputs from the simulation
- Excellent agreement shows that the algorithms are very well understood

- > Large Hadron Collider and the CMS Detector
- > CMS Level 1 Galorimeter Trigger
- > Algorithms and Validation
- Calorimeter Trigger Performance
- Summary

Jet Performance

- Expected performance of Level-1 trigger jet finding benchmarked against legacy trigger performance
- Simulated ttbar events used to estimate efficiency
- Minimum bias MC was used to estimate rate
- Efficiency is computed with respect to events fulfilling corresponding generator-level requirement
- Curves made by varying the Level-1 p_{T} threshold.
- Example working points give following rates:
 - 5kHz Single Jet, $p_{\tau} > 150 \text{ GeV}$
 - 5kHz Double Jet, p_T > 110 GeV
 - 10 kHz quad jet, $p_{T} > 50 \text{ GeV}$

Energy Sums Performance

- Level-1 H_T (left) and H_T^{miss} (right) trigger rate vs. efficiency for instantaneous luminosity 7 × 10^{33} cm⁻² s⁻¹
- Demonstrates reduction of H_T rate for large efficiencies with upgrade algorithms
- Provides increase in available trigger bandwidth
 - More complex algorithms, e.g. multiple object triggers
 - Crucial in searches for new physics!

EGamma Performance

- Electron trigger efficiency for 20 GeV threshold at L1 as function of offline reco E₇ in EB and EE (left)
- Relative rate of triggered events from 8 TeV zero bias data obtained from legacy and upgraded algorithms, both with and without isolation requirements
- Efficiencies obtained with current and upgraded algos shown with and without isolation criteria

Tau Performance

CMS Simulation 2015: gg \rightarrow H $\rightarrow \tau \tau - \sqrt{s=13}$ TeV, bx=25ns, <PU>=40

CMS Simulation 2015: gg \rightarrow H $\rightarrow \tau\tau$ /s=13 TeV, bx=25ns, <PU>=40 CMS Simulation 2015: Minimum Bias \s=13 TeV, bx=25ns, <PU>=40

Upgr. 2016, no iso

Upgr. 2016, WP 90%

Upgr. 2016, WP 70%

- Level-1 2016 upgraded trigger efficiency (left) •
- Black line is computed for the upgrade trigger in absence of isolation ٠
- Green, blue, red correspond to 90%, 80%, 70% isolation efficiency working points (WP) •
- Dashed lines correspond to additional requirements on shape veto, orange denotes legacy algorithm ٠
- Background rejection for double T hadronic trigger at Level-1 (right) for various WP and legacy ٠

- > Large Hadron Collider and the CMS Detector
- > CMS Laval 1 Galorimatar Triggar
- > Algorithms and Validation
- > Calorimeter Trigger Performance
- Summary

Summary and Outlook

- Run II at LHC provides a very challenging environment to search for new physics and measure properties of Higgs Boson
- Increase in instantaneous luminosity (13 TeV collisions, 25 ns bunch spacing, increase in protons per bunch) leads to large increase in pileup
- Requires improved performance online and offline
- Newly installed Level-1 trigger at CMS tackles these challenges head-on
 - State-of-the-art, FPGA based, very high bandwidth processors with complex, programmable algorithms increase efficiencies of identifying physics objects whilst reducing rates to make room for multi-object triggers
- Algorithms very well understood
 - Excellent agreement between firmware and C++ emulation
 - Will be used online to continuously monitor firmware performance during collision runs
- We shall study the performance of this newly installed trigger and learn from design and commissioning to begin designing Phase II trigger upgrade for High Luminosity LHC - a whole new challenge!