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Large Hadron Collider
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Hard 
scatter

• Proton-proton collider with design centre-of-mass energy of  14 TeV 
• 27km ring of  superconducting magnets at 8.3 T, cooled to -271 °C 
• 8 resonant radio-frequency cavities accelerate each proton beam 
• 1011 protons/bunch, 25 ns bunch spacing, 2808 bunches/beam 
• Designed to produce instantaneous luminosity of  1034 cm-2 s-1 
• All four experiments produce data rate of  ~ 700 MB/s when running

• Built to test Standard Model, perform searches for Higgs (done!), SUSY, dark matter, extra 
dimensions, and investigate mysteries of  gravity and matter antimatter asymmetry
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Compact Muon Solenoid Experiment
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• General purpose detector at the LHC 
• Built around huge solenoid magnet 

• cylindrical coil of  superconducting cable 
• produces field of  3.8 T  
• field confined by steel yoke 

• 14,000 tonnes, built above ground, 
reassembled underground in 15 sections 

• 22m long, 15m diameter 
• 3,800 collaborators from 200 institutes

• Too much data (~ 1 PB/s) from detectors to save all events to disk: trigger on interesting events only 

• Trigger must very quickly (~ 3 μs) construct physics objects (jet, egamma, tau) from calorimeter data 

• Fast hardware triggers built from FPGAs contain complex identification algorithms 

• Global trigger contains various ‘menus’ to provide manageable rate of  interesting events to HLT

Why do we need a trigger?



Electromagnetic Calorimeter
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• Scintillating crystal calorimeter: contains almost all energy of  
electrons and photons 

• 80,000 PbWO4  crystals: high density, small Molière radius, 
short rad length, fast scintillator 

• 22mm * 22 mm front face, 23 cm length ( = 26 radiation lengths)  

• Equipped with avalanche photo-diodes  

• Scintillation mechanism and uniformity of  light yield unaffected 
by radiation damage  

• Transparency of  crystals is affected by radiation through 
formation of  colour centres 

• Injection pulse monitoring system continuously monitors 
optical transmission



Hadronic Calorimeter
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• Barrel and endcap (HBHE): sampling calorimeters built from 50mm thick 
copper absorber plates interleaved with 4mm thick plastic scintillator tiles 

• Blue-violet light emission in tiles absorbed by wave-shifting fibres that 
fluoresce in green 

• HB not deep enough to contain full showers: additional scintillator layers 
(HOB) outside of  solenoid 

• Full radiation length of  HB + HOB around 11 absorption lengths  

• Hermetic coverage to | η | < 5 required for good missing energy resolution 

➡ Two forward hadronic calorimeters (HF)  

• Harsh radiation field: built from steel absorbers and quartz scintillator 

• Jet energies measured from Cerenkov light: excellent position resolution
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Level 1 Calorimeter Trigger: Legacy

11Dr. Aaron Bundock

RCT region 

Trigger tower 

5x5 ECAL crystal 
1 HCAL tower

• Trigger primitives sent from ECAL & HCAL to RCT  

• EM candidates and regional energies sent to GCT 

• Each trigger card processes a slice of  the calorimeter  

➡ Data has to be sent between cards to process overlap regions
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Run II: 

➡ L1 trigger must support physics program in Run II that allows for TeV scale searches 
whilst maintaining sensitivity for electroweak scale physics 

• LHC center-of-mass energy increased  to 13 TeV  

• Pileup increased from ~20 to ~50 interactions per crossing 

• Decreased bunch spacing from 50ns to 25ns 

• Instantaneous luminosity tripled to over 2 × 1034 cm-2 s-1 

➡ Trigger rates in Run II rise by around a factor six for same thresholds applied in 2012 if  no 
improvements to the existing trigger system

→ 2016 Calorimeter trigger upgrade: 

• Significantly improved calo resolution available for object ID 

• Improved electromagnetic object isolation using calorimeter 
energy distributions with pile-up subtraction  

• Improved jet finding with pile-up subtraction 

• Improved hadronic tau identification within a smaller fiducial area 

• Improved global trigger menu with more triggers and more 
sophisticated logical combinations of  input objects 

• Flexible and scalable to accommodate uncertain physics program 
(new physics??) and future upgrades to the experiment 

Legacy 
resolution 

Upgrade 
resolution

L1 Calo Trigger: Upgrade Motivation



L1 Calorimeter Trigger Upgrade: Overview
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• In upgraded calorimeter trigger, Layer-1 pre-processors receive trigger primitives 

• Fan out full detector data for one bunch crossing to one main processor 

• Time-multiplexed trigger: full detector data from ECAL and HCAL processed in a single MP!

ECAL HCAL HF
CTP7

MP7



Master Processor
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   Master Processor Virtex 7 

• Main workhorse for L1 calo trigger upgrade 
• Also used in BMTF, uGMT, uGT 

• 1.5 Tb/s signal processor board  
• Xilinx XC7VX690T FPGA 
• 72 Tx + 72 Rx links @ 10 Gb/s  
• Avago MiniPOD embedded optics  
• uTCA form factor 
• GbE, AMC13/TTC/TTS, PCIe, SAS, SATA, 

SRIO backplane links 
• AVR UC3A3256 microcontroller 
• MicroSD for FPGA booting 

• Used as firmware repository



L1 Calorimeter Trigger: Layer 1 & Layer 2
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Layer 1→ Layer 2 patch panel

MP7 Rack
Layer 2 crate: 

MP7 main processors

Layer 1 crate: 
CTP7 pre-processors
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Firmware Architecture
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• Modular firmware design 

➡ split into algorithm and infrastructure  

➡ allows independent development 

• High resource usage due to complex algorithms 

• A lot of  care has to be taken with timing constraints 
and clock distribution! 

• Algorithms clocked at 240 MHz, pipelined in η slices

Clusters           Towers              Jets           Sorting



Jet Algorithm
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• New trigger architecture provides full trigger tower (TT) resolution 

• improved energy and position resolution  

• flexibility to define different jet sizes 

• multiple pile-up estimation algorithms uawd for pileup subtraction  

• 9x9 sliding-window algorithm centred on TT with local max ET  ( jet seed)  

• Jet ET = sum of  TT ET  in the 9x9 sliding window 

• Jet position defined by η,φ position of  local maximum  (jet seed) 

• Inequality mask: avoid self  veto & double counting of  energy deposits

• ‘Chunky donut’ pileup subtraction applied to jets 

• Total ET  in 3x9 TT rectangle on each side of  the jet is 
determined 

• 3 lowest energy sides used to determine pile-up energy 
density 

• this value is then scaled to the area of  the jet and 
subtracted from the individual jet ET   

• Testing with minimum-bias MC shows this energy density is 
a good estimate of  pile-up



Jet Algorithm Validation
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Comparison between jets found by L1 trigger algorithm and jets found by 
offline Anti-Kt jet finding algorithm in software (with R=0.4) in ttbar MC events

Leading jet ET

Leading jet η

4th leading jet ET

4th leading jet η



EGamma Algorithm
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• Electrons and photons reconstructed in FPGA from clusters of  calorimeter towers 

• Cutting edge FPGA resources allow for advanced clustering techniques with variety of  shapes 

• Electrons and photons also have pileup subtraction for better energy measurements at Level 1 

• More info on electrons and photons in the CMS Level 1 trigger in talk from T. Strebler later today



Tau Algorithm
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• Full trigger tower (TT) granularity exploited using dynamic 
clustering technique  

• ECAL + HCAL energy used 

• Two clusters can be merged  

• Criteria based on relative neighbour position to better 
reconstruct multi particles hadronic tau decays 

• ~85% isolated clusters, ~15% merged clusters 

• Isolation energy is computed as energy in a 5x9 window 
around cluster seed, minus L1 𝜏 candidate energy and 
compared to a threshold  

• Threshold depends on PU, η(𝜏), Et(𝜏)



Firmware vs. Emulation: Jets
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• Level 1 jet upgraded algorithm firmware 
output distributions for pT , η, and φ  

• Produced by running ttbar MC events 
through firmware algorithms on MP7 

• Results are compared to the expected 
outputs from the simulation 

• Excellent agreement shows that the 
algorithms are very well understood



Firmware vs. Emulation: Jet sums
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• Comparison of  simulation and hardware results for Level-1 Trigger jet energy sums 

• Produced by running ttbar MC sample through firmware algorithms on MP7 

•  Distributions show scalar (HT) and vector (HT
miss) sums of  all jets found in hardware units 

• Excellent agreement observed between hardware and simulation



Firmware vs. Emulation: EGamma
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• Level 1 e/γ upgraded algorithm firmware output distributions for pT , η, and φ  

• Produced by running Z→ee MC events through firmware algorithms 

• Results are compared to the expected outputs from the simulation 

• Excellent agreement shows that the algorithms are very well understood
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Jet Performance
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• Expected performance of  Level-1 trigger jet finding 
benchmarked against legacy trigger performance  

• Simulated ttbar events used to estimate efficiency 

• Minimum bias MC was used to estimate rate  

• Efficiency is computed with respect to events fulfilling 
corresponding generator-level requirement 

• Curves made by varying the Level-1 p
T threshold.  

• Example working points give following rates: 

• 5kHz Single Jet, p
T
 > 150 GeV 

• 5kHz Double Jet, p
T
  > 110 GeV 

• 10 kHz quad jet, p
T
 > 50 GeV



Energy Sums Performance
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• Level-1 HT (left)  and HT
miss

  (right) trigger rate vs. efficiency for instantaneous luminosity 7 ×10
33

cm−2
s−

1
 

• Demonstrates reduction of  HT rate for large efficiencies with upgrade algorithms 

• Provides increase in available trigger bandwidth 

➡ More complex algorithms, e.g. multiple object triggers 

➡ Crucial in searches for new physics!



EGamma Performance
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• Electron trigger efficiency for 20 GeV threshold at L1 as function of  offline reco ET in EB and EE (left) 

• Relative rate  of  triggered events from 8 TeV zero bias data obtained from legacy and upgraded 
algorithms, both with and without isolation requirements 

• Efficiencies obtained with current and upgraded algos shown with and without isolation criteria



Tau Performance
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• Level-1 2016 upgraded trigger efficiency (left) 

• Black line is computed for the upgrade trigger in absence of  isolation 

• Green, blue, red correspond to 90%, 80%, 70% isolation efficiency working points (WP) 

• Dashed lines correspond to additional requirements on shape veto, orange denotes legacy algorithm 

• Background rejection for double τ hadronic trigger at Level-1 (right) for various WP and legacy
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Summary and Outlook
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• Run II at LHC provides a very challenging environment to search for new 
physics and measure properties of  Higgs Boson 

• Increase in instantaneous luminosity ( 13 TeV collisions, 25 ns bunch spacing, 
increase in protons per bunch) leads to large increase in pileup  

• Requires improved performance online and offline 

• Newly installed Level-1 trigger at CMS tackles these challenges head-on 

• State-of-the-art, FPGA based, very high bandwidth processors with 
complex, programmable algorithms increase efficiencies of  identifying 
physics objects whilst reducing rates to make room for multi-object triggers 

• Algorithms very well understood 

• Excellent agreement between firmware and C++ emulation  

➡ Will be used online to continuously monitor firmware performance during 
collision runs 

• We shall study the performance of  this newly installed trigger and learn from 
design and commissioning to begin designing Phase II trigger upgrade for High 
Luminosity LHC - a whole new challenge!


