

The NA62 Hadron Calorimeter

Riccardo Aliberti

Johannes Gutenberg Universität - Mainz

CALOR 2016 17th International Conference on Calorimetry in Particle Physics

Daegu, 17.05.2016

Bundesministerium für Bildung und Forschung

The NA62 Experiment

- Fixed Target Experiment
- Located at the North Area of CERN
- Main Goal: $Br(K^+ \rightarrow \pi^+ v \bar{v})$
 - ▶10% Precision
 - >100 Events in 2 Years
 - Background below 20%
- 75 GeV/c Secondary Hadron Beam
- Data Taking on going: 2014 (Pilot Run), 2015 – 2018 (Physics Data)

Theoretical Motivation

FCNC loop process, highly suppressed, theoretically very clean

Well calculated inside the Standard Model [A.J. Buras et al., JHEP 1511 (2015) 033]

 $Br_{SM}(K^+ \to \pi^+ v \bar{v}) = (9.11 \pm 0.72) \times 10^{-11}$

Previous Measurement (only 7 events) [BNL E787/E949: PRL101 (2008) 191802]

$$Br_{Exp}(K^+ \to \pi^+ v \bar{v}) = (17.3 \pm 10.5^{11.5}) \times 10^{-11}$$

Any deviation from the SM prediction is a hint of new physics

Precise kinematic reconstruction

- Hermetic Photon Detection
- Efficient PID for pion/muon discrimination

Precise kinematic reconstruction

Hermetic Photon Detection

Efficient PID for pion/muon discrimination

Precise kinematic reconstruction

- Hermetic Photon Detection
- Efficient PID for pion/muon discrimination

Hadron Calorimeter

- Part of the NA62 PID system
- Sampling Calorimeter, Alternated Iron Scintillator planes
- 2 Modules:
 - Front (MUV1)
 - 176 Readout Channel
 - Readout with WLS fibers
 - Back (MUV2)
 - 88 Readout Channels
 - Direct readout via light guides
- More than 7 Interaction Lengths
- Flash ADC Readout common to both EM and HAC Calorimeters (40 MHz)

MUV1

- 1220 Scintillators in 23 Layers
- Thickness: 0.9 cm
- Maximum Length: 2.62 m
- Transversal Segmentation: 6 cm
- 2 Kuraray Y11 WLS fibers per scintillator
- Readout on both the fiber ends

MUV2

- NA48 HAC Front Module
- 1056 Scintillators in 24 Layers
- Thickness: 0.45 cm
- Maximum Length: 1.31 m
- Transversal Segmentation: 12 cm
- Direct Readout via Light Guides

Channel Response Equalization

- Dedicated runs with muon beam
- First Equalization of Photomultipliers gain by changing the supply High Voltage
- Fine Equalization of single channel response applied offline
- Determination of Attenuation and Timing Corrections
- Cluster Energy Calibration

Channel Response Equalization

Channel Response Equalization

MUV2 Charge collected vs Position

Cluster Energy Calibration

Pion Calibration

- Usually test beams to estimate the calibrations parameters and then test and optimization on data
- MUV1: No time for test beam before detector installation in 2015
- MUV2: Performed at beginning of NA48 ('94), before LKr installation, but information not anymore easily accessible
- MC Simulations to evaluate calibration and corrections
- Data to check results and optimize the corrections

Invisible Energy

- K⁺ → e⁺v MC Simulation for precise sampling fraction estimation
- $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ MC Simulation for Invisible Energy estimation
- No Invisible Energy in case of Pure EM showers
- Invisible Energy parametrized with the function:

$$\frac{E_{Vis}}{E_{\pi}} = \alpha \left(1 - e^{-\frac{(E_{\pi} + \beta)}{\gamma}} \right)$$

Shower Shape Weighting

In order to reach the best energy resolution it is necessary to take in account the different processes that characterize the pion showers

Test Corrections on MC

Energy Resolution

Data

Selecting pure Pion Samples with no Interaction in the EM Calorimeter (LKr)

Keeping in the sample small amount of Muons as Control Sample

MUV1

Data

HAC Energy HAC Energy (GeV) Before 0 60 70 Pion Momentum(GeV) HAC Energy after Weighting HAC Energy (GeV) Weighting 0<u>'</u> 0 60 70 Pion Momentum (GeV)

HAC Energy (GeV) 05 09 02 Invisible -00^L 0 60 70 Pion Momentum (GeV) HAC Energy after Weighting alaa I μ Control Sample: 2 GeV 60 70 HAC Energy (GeV)

HAC Energy after Invisible Energy Correction

HAC Resolution

Conclusion

- NA62 aims to measure: $Br(K^+ \rightarrow \pi^+ v \bar{v})$ with 10% precision
- Very tiny theoretical $Br_{SM}(K^+ \rightarrow \pi^+ v \bar{v}) = (9.11 \pm 0.72) \times 10^{-11}$
- Very efficient PID system required
- The Calorimetry System plays a major role in the PID
- The Hadronic Calorimeter is composed by two modules
- More than 7 Interaction Lengths
- Slightly different structure between the modules
 - To be treated separately in calibration phase
- Calibration performed

• Energy Resolution:
$$\frac{\sigma_E}{E} = 0.115 \oplus \frac{0.38}{\sqrt{E}} \oplus \frac{1.37}{E}$$