

GEOMETRIC & LIGNMENT OF THE SND DETECTOR

Natalya Melnikova

Budker Institute of Nuclear Physics Novosibirsk, Russia

CALOR2016, 17th May 2016

VEPP-2000

VEPP-2000:

- e⁺e⁻ collider at BINP, Novosibirsk;
- for the hadronic cross section measurement experiments;
- $E_{c.m.s.} = 0.4 2 \text{ GeV};$
- 2 interaction points: the CMD-3 and SND detectors.

SND scheme: 1—vacuum pipe, 2—tracking system (TS), 3—Cherenkov counter, 4–5—electromagnetic calorimeter (Nal (TI)) (EMC), 6—iron absorber, 7–9—muon detector, 10—focusing solenoids, 11 - rails, 12 – wheels.

- The EMC is assembled/disassembled on 2 half-spheres;
- The reference coordinate system is the TS (as the most accurate).

Motivation for alignment

What we see:

 There is a difference between angles reconstructed in the TS and in the EMC due to misalignments (~mm, ~0.01 rad);

Why it's important:

- Misalignments can result in kinematic discrepancy in an event because:
 - The TS measures angles of charged particles (π⁺, π⁻, K⁺, K⁻);
 - The EMC measures angles of neutral particles (γ , π^0);

<u>Solution</u> – a software alignment procedure using $e^+e^- \rightarrow e^+e^-$ data (allow us to obtain angles reconstructed both in the TS and in the EMC).

Angles from the TS: ϕ_{TS} , θ_{TS}

- Angles from the two subsystems should be compared on the same radius (R);
- R is estimated for the TS angles
 using x the distance of the
 maximum of the longitudinal
 shower distribution:

$$\frac{x}{x_0} = 1.0 \left(\ln \frac{\mathrm{E}}{\mathrm{E}_{\mathrm{c}}} - 0.5 \right)$$

where

 x_0 - radiation length; E_c - critical energy;

Parametrization of the EMC position

- <u>Global EMC position:</u>
 - Global rotation (3): α ; β_1 , β_2 direction of the Z';
 - Global shift (3): dx, dy, dz;
- EMC half-spheres relative position:
 - Separation of the EMC 2 half-spheres (3):

 μ, τ, dx_{rel}

 $\tau = 0$ (direction of the separation) \rightarrow

- More relative parameters (3):
 - β_{rel} a relative rotation of a half-sphere around the X axis;
 - dy_{rel} a relative shift of a half-sphere along the Y axis;
 - dz_{rel} a relative shift of a half-sphere along the Z axis.

Mathematical model

- Total number of alignment parameters: 12;
- Model functions are constructed using them: If $p_0(R, \varphi_{p_0}, \theta_{p_0})$ is an point of the aligned EMC, Then a point of the misaligned EC is $p_1 = T \cdot (T_\omega \cdot T_{\beta_{rel}} \cdot p_0 + s_{rel}) + s$, where $T(\alpha, \beta_1, \beta_2) - a$ global rotation matrix, $T_{rel}(\mu, \tau, \beta_{rel}) - a$ relative rotation matrix, $s_{rel}(dx_{rel}, dy_{rel}, dz_{rel}) - a$ relative shift vector, s(dx, dy, dz) - a global shift vector.

Finally,

$$f_{\varphi}(\varphi_{p_{0}}, \theta_{p_{0}}) = sin(\varphi_{p_{1}} - \varphi_{p_{0}}) \text{ corresponds to } sin(\varphi_{TS} - \varphi_{EMC}), \\ f_{\theta}(\varphi_{p_{0}}, \theta_{p_{0}}) = (\theta_{p_{1}} - \theta_{p_{0}}) \text{ corresponds to } \theta_{TS} - \theta_{EMC}.$$

*the direction of the relative transformations (T_{rel} , s_{rel}) is determined by $sign(\cos(\varphi_s))$.

Retrieving alignment parameter values

• Parameter values are obtained by minimizing the χ^2 function:

$$\chi^{2} = \sum_{i} \left\{ \left(\frac{\left\langle \sin(\varphi_{TS_{i}} - \varphi_{EMC_{i}}) \right\rangle - f_{\varphi}(\varphi_{EMC_{i}}, \left\langle \theta_{EMC_{i}} \right\rangle)}{\sigma_{\varphi_{i}}} \right)^{2} + \left(\frac{\left\langle \theta_{TS_{i}} - \theta_{EMC_{i}} \right\rangle - f_{\theta}(\varphi_{EMC_{i}}, \left\langle \theta_{EMC_{i}} \right\rangle)}{\sigma_{\theta_{i}}} \right)^{2} \right\}$$

- *i* ∈ [1, 160] (a 2D bin index);
- φ_s , θ_s angles reconstructed in the EMC;
- φ_{TS} , θ_{TS} angles reconstructed in the TS;
- $\langle \rangle$ average over $e^+e^- \rightarrow e^+e^-$ selected events;
- f_{φ} and f_{θ} model functions;

•
$$\sigma_{\varphi \setminus \theta_i}^2 = \sigma_{\varphi \setminus \theta_i}^2_{stat} + \sigma_{sys}^2$$
.

• Parameters are determined by the first 2 layers.

Calibration procedure:

- 1. $e^+ e^- \rightarrow e^+ e^-$ event selection:
 - Charged particle number = 2;
 - $0,8 \cdot E_{beam} < E_{particle} < 1,1 \cdot E_{beam};$

•
$$\Delta \varphi = abs(\pi - abs(\varphi_{TS_1} - \varphi_{TS_2})) < \frac{\pi}{18}$$
.

- 2. Minimization and retrieving alignment parameter values;
- 3. Saving the parameter values to the conditions data base;
- 4. Applying the values in Reconstruction and Simulation.

Fit results

۲

Validation with MC

- MC with obtained alignment parameters:
 - Is based on the Geant4 package;
 - Takes into account damaged counters and recorded machine background;
 - Uses nested volumes hierarchy hence no need to place single crystals;

• Comparison with data demonstrates that the math model is consistent with it:

Corrections: $e^+ e^- \rightarrow e^+ e^-$

Where

 φ, θ – an azimuth/polar angle reconstructed in TS; $\varphi_{EMC}/\theta_{EMC}$ - an azimuth/polar EMC angle.

```
E = 612.5 MeV
```

Corrections: $e^+ e^- ->2 \gamma$

Geometric alignment of the SND CALOR2016, 17th of May 2016 Natalya Melnikova

Parameters during Run 2010:

- α (the global rot. around the Z axis) stays stable during the season;
- dx (the global shift along the X axis) changes slightly due to disassembling/assembling the detector.

Summary:

- The alignment procedure for the SND detector was designed, implemented and validated with MC;
- The procedure was successfully applied to the Run 2010 data:
- As a result of corrections:
 - the $\phi_{TS}-\phi_{EMC}$ bias absolute value decreased from 60.38 to 0.38 mrad ;
 - the $\phi_{TS} \phi_{EMC}$ RMS decreased from 34.97 to 32.02 mrad (8.4%);
 - the $\theta_{TS} \theta_{EMC}$ bias absolute value decreased from 2.7 to 0.5 mrad;
 - the $\phi_{EMC_1}-\phi_{EMC_2}~(2\gamma)$ RMS decreased from 43.3 to 36.56 mrad (15.6%);
- The results of geometric calibration are used in data analysis.

Thank you for your time!

Natalya Melnikova Geometric alignment of the SND CALOR2016, 17th of May 2016

Parametrization of the EMC position

- EMC half-spheres relative position:
 - Separation of the EMC 2 half-spheres (3):

 dp_1 , dp_2 , dp_3 distances between 2 half-spheres in points p_i , i = 1, 2, 3.

 $\tau = 0$ (direction of the separation)

- Parameter correlation coefficients (abs >0.8) :
 - α, dy_{rel} = -0.845;

 σ_{sys}^2 estimation:

- Comes from:
 - The EMC DNL;
 - Possible effects of single crystal relative misalignments;
 - Uncertainty of the 3rd layer position.
- Estimation:
 - If we modify the χ^2 function :

$$\chi^{2} = \sum_{i} \left\{ \left(\frac{\left\langle \sin(\varphi_{TS_{i}} - \varphi_{EMC_{i}}) \right\rangle - f_{\varphi}(\varphi_{EMC_{i}}, \left\langle \theta_{EMC_{i}} \right\rangle) + a}{\sigma_{\varphi_{i}}} \right)^{2} + \left(\frac{\left\langle \theta_{TS_{i}} - \theta_{EMC_{i}} \right\rangle - f_{\theta}(\varphi_{EMC_{i}}, \left\langle \theta_{EMC_{i}} \right\rangle) + a}{\sigma_{\theta_{i}}} \right)^{2} \right\}$$

We can estimate $a \sim \left(\frac{\chi^{2}}{Ndf} - 2 \right) \cdot \frac{Ndf}{\sum_{i} \frac{1}{\sigma_{\varphi_{i}}^{2}} + \frac{1}{\sigma_{\theta_{i}}^{2}}}} \sim 10^{-6}$

Corrections: $e^+ e^- \rightarrow e^+ e^-$

E = 612.5 MeV

Environment, tools and instruments:

- Offline SND framework;
- GCC;
- C++ ISO/IEC 14882:2003;
- Scientific Linux 5;
- CERN ROOT package;
- CLHEP package;
- Python.