GEOMETRIC ALIGNMENT OF THE SND DETECTOR

Natalya Melnikova
Budker Institute of Nuclear Physics
Novosibirsk, Russia

CALOR2016, $17^{\text {th }}$ May 2016

VEPP-2000

VEPP-2000:

- $\mathrm{e}^{+} \mathrm{e}^{-}$collider at BINP, Novosibirsk;
- for the hadronic cross section measurement experiments;
- $\mathrm{E}_{\text {c.m.s. }}=0.4-2 \mathrm{GeV}$;
- 2 interaction points: the CMD-3 and SND detectors.

Spherical Neutral Detector (SND)

SND scheme: 1-vacuum pipe, 2-tracking system (TS), 3-Cherenkov counter, 4-5-electromagnetic calorimeter (NaI (TI)) (EMC), 6 -iron absorber, 7-9-muon detector, 10-focusing solenoids, 11 - rails, 12 - wheels.

- The EMC is assembled/disassembled on 2 half-spheres;
- The reference coordinate system is the TS (as the most accurate).

Motivation for alignment

What we see:

- There is a difference between angles reconstructed in the TS and in the EMC due to misalignments ($\sim m m, ~ \sim 0.01 \mathrm{rad}$);

Why it's important:

- Misalignments can result in kinematic discrepancy in an event because:
- The TS measures angles of charged particles ($\pi^{+}, \pi^{-}, K^{+}, K^{-}$);
- The EMC measures angles of neutral particles $\left(\gamma, \pi^{0}\right)$;

Solution - a software alignment procedure using $e^{+} e^{-} \rightarrow e^{+} e^{-}$data (allow us to obtain angles reconstructed both in the TS and in the EMC).

$\varphi_{\mathrm{TS}} / \theta_{\mathrm{TS}}$ - azimuth/polar TS angle $\varphi_{\mathrm{EMC}} / \theta_{\mathrm{EMC}}{ }^{-}$azimuth/polar EMC angle $e^{+} e^{-} \rightarrow e^{+} e^{-}$data

Angles from the TS: $\varphi_{\mathrm{TS}}, \theta_{\mathrm{TS}}$

Parametrization of the EMC position

- Global EMC position:
- Global rotation (3): $\alpha ; \beta_{1}, \beta_{2}$ - direction of the Z^{\prime};
- Global shift (3): dx, dy, dz;
- EMC half-spheres relative position:
- Separation of the EMC 2 half-spheres (3):

$$
\begin{aligned}
& \mu, \tau, d x_{r e l} \\
\tau= & 0 \text { (direction of the separation) }
\end{aligned}
$$

- More relative parameters (3):

- $\beta_{r e l}$ - a relative rotation of a half-sphere around the X axis;
- $d y_{\text {rel }}$ - a relative shift of a half-sphere along the Y axis;
- $d z_{\text {rel }}$ - a relative shift of a half-sphere along the Z axis.

Mathematical model

- Total number of alignment parameters: 12;
- Model functions are constructed using them:

If $\boldsymbol{p}_{\mathbf{0}}\left(R, \varphi_{\boldsymbol{p}_{\boldsymbol{0}}}, \boldsymbol{\theta}_{\boldsymbol{p}_{\boldsymbol{0}}}\right)$ is an point of the aligned EMC,
Then a point of the misaligned EC is $\boldsymbol{p}_{\boldsymbol{1}}=\boldsymbol{T} \cdot\left(\boldsymbol{T}_{\boldsymbol{\omega}} \cdot \boldsymbol{T}_{\beta_{\text {rel }}} \cdot \boldsymbol{p}_{\boldsymbol{0}}+\boldsymbol{s}_{\boldsymbol{r e l}}\right)+\mathbf{s}$, where
$\boldsymbol{T}\left(\alpha, \beta_{1}, \beta_{2}\right)$ - a global rotation matrix,
$\boldsymbol{T}_{\text {rel }}\left(\mu, \tau, \beta_{\text {rel }}\right)$ - a relative rotation matrix,
$\boldsymbol{s}_{\text {rel }}\left(d x_{r e l}, d y_{r e l}, d z_{r e l}\right)$ - a relative shift vector, $\mathbf{s}(\mathrm{dx}, \mathrm{dy}, \mathrm{dz})$ - a global shift vector.
Finally,

$$
\begin{aligned}
& f_{\varphi}\left(\varphi_{\boldsymbol{p}_{0}}, \theta_{\boldsymbol{p}_{0}}\right)=\sin \left(\varphi_{\boldsymbol{p}_{\boldsymbol{1}}}-\varphi_{\boldsymbol{p}_{0}}\right) \text { corresponds to } \sin \left(\varphi_{\boldsymbol{T S}}-\varphi_{\boldsymbol{E} \boldsymbol{C}}\right) \\
& f_{\theta}\left(\varphi_{\boldsymbol{p}_{0}}, \theta_{\boldsymbol{p}_{\boldsymbol{0}}}\right)=\left(\theta_{\boldsymbol{p}_{\boldsymbol{1}}}-\theta_{\boldsymbol{p}_{0}}\right) \text { corresponds to } \theta_{\boldsymbol{T S}}-\theta_{\boldsymbol{E} C} .
\end{aligned}
$$

*the direction of the relative transformations ($\boldsymbol{T}_{\boldsymbol{r e l}}, \boldsymbol{s}_{\boldsymbol{r e l}}$) is determined by $\operatorname{sign}\left(\cos \left(\varphi_{s}\right)\right)$.

Retrieving alignment parameter values

- Parameter values are obtained by minimizing the χ^{2} function:

$$
\begin{gathered}
\chi^{2}=\sum_{i}\left\{\left(\frac{\left\langle\sin \left(\varphi_{T S_{i}}-\varphi_{E M C_{i}}\right)\right\rangle-f_{\varphi}\left(\varphi_{E M C_{i}},\left\langle\theta_{E M C_{i}}\right\rangle\right)}{\sigma_{\varphi_{i}}}\right)^{2}+\right. \\
\left.+\left(\frac{\left\langle\theta_{T S_{i}}-\theta_{E M C_{i}}\right\rangle-f_{\theta}\left(\varphi_{E M C_{i}},\left\langle\theta_{E M C_{i}}\right\rangle\right)}{\sigma_{\theta_{i}}}\right)^{2}\right\}
\end{gathered}
$$

- $i \in[1,160]$ (a 2D bin index);
- φ_{s}, θ_{s} - angles reconstructed in the EMC;
- $\varphi_{T S}, \theta_{T S^{-}}$angles reconstructed in the TS;
- 〈 \rangle - average over $e^{+} e^{-} \rightarrow e^{+} e^{-}$selected events;
- f_{φ} and f_{θ} - model functions;
- $\sigma_{\varphi \backslash \theta_{i}}{ }^{2}=\sigma_{\varphi \backslash \theta_{i}}{ }^{2}{ }_{s t a t}+\sigma_{s y s}^{2}$.
- Parameters are determined by the first 2 layers.

Calibration procedure:

1. $\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-}$event selection:

- Charged particle number $=2$;
- $0,8 \cdot E_{\text {beam }}<E_{\text {particle }}<1,1 \cdot E_{\text {beam }}$;
- $\Delta \varphi=\operatorname{abs}\left(\pi-\operatorname{abs}\left(\varphi_{T S_{-} 1}-\varphi_{T S_{-}}\right)\right)<\frac{\pi}{18}$.

2. Minimization and retrieving alignment parameter values;
3. Saving the parameter values to the conditions data base;
4. Applying the values in Reconstruction and Simulation.

Fit results

- The model is in good consistent with data: $\frac{\chi^{2}}{N d f} \sim 1 \div 1.5$

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} \text {data, } \mathrm{E}=612.5
$$

Validation with MC

- MC with obtained alignment parameters:
- Is based on the Geant4 package;
- Takes into account damaged counters and recorded machine background;
- Uses nested volumes hierarchy hence no need to place single crystals;
- Comparison with data demonstrates that the math model is consistent with it:

Corrections: $\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-}$

Where
φ, θ - an azimuth/polar angle reconstructed in TS;
$\mathrm{E}=612.5 \mathrm{MeV}$
$\varphi_{\mathrm{EMC}} / \theta_{\mathrm{EMC}}$ - an azimuth/polar EMC angle.

Corrections: $\mathrm{e}^{+} \mathrm{e}^{-}->2 \gamma$

Event selection:

- Charged particle number $=0$;
- Neutral particle number = 2;
- Muon veto;
- $\frac{\pi}{5}<\theta_{E M C}<\frac{4 \cdot \pi}{5}$;
- $E_{\text {particle }}>0.7 \cdot E_{\text {beam }}$.

Parameters during Run 2010:

- α (the global rot. around the Z axis) stays stable during the season;
- dx (the global shift along the X axis) changes slightly due to disassembling/assembling the detector.

Summary:

- The alignment procedure for the SND detector was designed, implemented and validated with MC;
- The procedure was successfully applied to the Run 2010 data:
- As a result of corrections:
- the $\varphi_{\text {TS }}-\varphi_{\text {EMC }}$ bias absolute value decreased from 60.38 to 0.38 mrad;
- the $\varphi_{\text {TS }}-\varphi_{\text {EMC }}$ RMS decreased from 34.97 to $32.02 \mathrm{mrad}(8.4 \%)$;
- the $\theta_{\text {TS }}-\theta_{\text {EMC }}$ bias absolute value decreased from 2.7 to 0.5 mrad;
- the $\varphi_{\text {EMC_1 }}-\varphi_{\text {EMC_2 }}(2 \gamma)$ RMS decreased from 43.3 to 36.56 mrad (15.6\%);
- The results of geometric calibration are used in data analysis.

Thank you for your time!

Parametrization of the EMC position

- EMC half-spheres relative position:
- Separation of the EMC 2 half-spheres (3):

$$
\mu, \tau, d x_{r e l} \text { OR } d p_{1}, d p_{2}, d p_{3}
$$

- Parameter correlation coefficients (abs >0.8) :
- $\alpha, d y_{\text {rel }}=-0.845$;

$\sigma_{s y s}^{2}$ estimation:

- Comes from:
- The EMC DNL;
- Possible effects of single crystal relative misalignments;
- Uncertainty of the $3^{\text {rd }}$ layer position.
- Estimation:
- If we modify the χ^{2} function :

$$
\begin{aligned}
\chi^{2}=\sum_{i} & \left\{\left(\frac{\left\langle\sin \left(\varphi_{T S_{i}}-\varphi_{E M C_{i}}\right)\right\rangle-f_{\varphi}\left(\varphi_{E M C_{i}},\left\langle\theta_{E M C_{i}}\right\rangle\right)+a}{\sigma_{\varphi_{i}}}\right)^{2}+\right. \\
& \left.+\left(\frac{\left\langle\theta_{T S_{i}}-\theta_{E M C_{i}}\right\rangle-f_{\theta}\left(\varphi_{E M C_{i}},\left\langle\theta_{E M C_{i}}\right\rangle\right)+a}{\sigma_{\theta_{i}}}\right)^{2}\right\}
\end{aligned}
$$

- We can estimate $\boldsymbol{a} \sim\left(\frac{\chi^{2}}{N d f}-2\right) \cdot \frac{N d f}{\sum_{i} \frac{1}{\sigma_{\varphi_{i}}{ }^{2}}+\frac{1}{\sigma_{\theta_{i}}{ }^{2}}} \sim 10^{-6}$

Corrections: $\mathrm{e}^{+} \mathrm{e}^{-->} \mathrm{e}^{+} \mathrm{e}^{-}$

$\mathrm{E}=612.5 \mathrm{MeV}$

Environment, tools and instruments:

- Offline SND framework;
- GCC;
- C++ ISO/IEC 14882:2003;
- Scientific Linux 5;
- CERN ROOT package;
- CLHEP package;
- Python.

