Timeline  $(^{1}/_{21})$ 

Introduction...

Upgrade...

LVPS + HV OPTO ...

<sup>1</sup>3 in 1 + MB…

<sup>2</sup>FATALIC...

<sup>3</sup>QIE...

Daughterboard...

Tile Preprocessor...

Radiation Tolerance...

Conclusions...

# Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC.

"CALOR 2016" conference, Daegu, South Korea, May 15 - May 20, 2016.)

Eduardo Valdes Santurio (on behalf of the ATLAS Tile Calorimeter System...)



# From present to phase II...





### Eduardo Valdes S... PhD

Timeline  $(^{3}/_{21})$ 

# 

Timeline  $(\frac{4}{21})$ 

# From present to phase II...



Introduction... Upgrade... LVPS + HV OPTO ... <sup>1</sup>3 in 1 + MB... <sup>2</sup>FATALIC... <sup>3</sup>QIE... Daughterboard... Tile Preprocessor... Radiation Tolerance... Conclusions...

~80 Tbps

8192

10 Gbps

32?

4

2 Tbps

ROD: Read Out Driver TTC: Trigger Timing and Control LVPS: Low Voltage Power Supply **DCS:** Detector Control System L1Calo: Level 1 Calorimeter trigger L1A: Level 1 Acceptance (from the ATLAS level 1 Central Trigger). **sLX:** super Level X calorimeter trigger HV: High Voltage **CAN:** Controlled Area Network.  $\Sigma$ : Summation Cards FELIX: Front-End LInk eXchange

Eduardo Valdes S... PhD

- Complete replacement of on-detector and off-detector electronics
- New readout strategy to provide digital trigger information at low latency for L0/L1 -
- Pipelines, derandomizers, DCS&TTC interface moved off-detector
- Improve reliability: reducing interconnections and stack of boards, implementing redundancy -
- Minimize impact of failures with smaller DAQ elements: 1 super drawer is split in 4 independent mini-drawers with full redundant data path and powering.

| Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                     |                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|-----------------------------------------------------------------------|--|--|
| Hybrid drawer for the insertion in the current ATLAS detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                     | Timeline ( <sup>5</sup> / <sub>21</sub> )                             |  |  |
| Demonstrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                     | Introduction<br>Upgrade<br>LVPS + HV OPTO<br><sup>1</sup> 3 in 1 + MB |  |  |
| SuperDrawer<br>MiniDrawer MiniDrawer MiniDrawer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total data rate            | ~80 Tb/s            | <sup>2</sup> FATALIC                                                  |  |  |
| MiniDrawer MiniDrawer MiniDrawer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of links            | 8192                | <sup>3</sup> QIE…<br>Daughterboard…                                   |  |  |
| Adder base board (J. B. Base board (J. | Data rate per link         | 10 Gb/s             | Tile Preprocessor                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4x4 (+4x4)                 | Radiation Tolerance |                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Data rate per super-drawer | 160 Gb/s            | Conclusions                                                           |  |  |
| HVPS     HVPS     HVPS     HVPS       MinQraver     MinQraver     CAN       LVPS     Converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                     |                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | R                   | <b>OD:</b> Read Out Driver                                            |  |  |

- Compatibility of on detector and off-detector electronics with the current system (Hybrid drawer).
- Possibility of insertion in ATLAS for testing the performance of the upgrade system without compromising the present data taking.

TTC: Trigger Timing and Control LVPS: Low Voltage Power Supply **DCS:** Detector Control System L1Calo: Level 1 Calorimeter trigger sLX: super Level X calorimeter trigger HV: High Voltage **CAN:** Controlled Area Network.  $\Sigma$ : Summation Cards **FELIX:** Front-End Llnk eXchange

 $\overline{}$ 

Eduardo Valdes S... PhD

| Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC. |                                           |
|--------------------------------------------------------------------------------|-------------------------------------------|
| Demonstrator                                                                   | Timeline ( <sup>6</sup> / <sub>21</sub> ) |
|                                                                                | Introduction                              |
|                                                                                | Upgrade…                                  |
|                                                                                | LVPS + HV OPTO                            |
| - New LVPS                                                                     | <sup>1</sup> 3 in 1 + MB                  |
|                                                                                | <sup>2</sup> FATALIC                      |
| - 2 different HVPS are proposed                                                | <sup>3</sup> QIE                          |
|                                                                                | Daughterboard                             |
|                                                                                | Tile Preprocessor                         |
| - 3 different front end solutions are proposed                                 | Radiation Tolerance                       |
| <ul> <li>Modified 3 in 1 cards + mainboard</li> </ul>                          | Conclusions                               |

- QIE + mainboard
- FATALIC + mainboard
- A common control "daughterboard" compatible with the 3 front end solutions.
- One off detector tile preprocessor that will communicate with the on detector electronics and make the system compatible with the current tilecal electronics.





- New LVPS and HVPS with double redundant design.
- Two High Voltage solutions are proposed with local or remote source.

**PMT:** Photomultiplier **FPGA:** Filed Programmable Gate Array.

Eduardo Valdes S... PhD 🔹

# 3 in 1 Front end cards + Mainboard...



- Current design with modern components and improved performance
- Better linearity.
- Successful radiation tests.
- shape the PMT signal to a stable pulse with 27 ns width.
- bi-gain system with gain ratio 32.
- 17 bit dynamic range.
- injects calibration pulses
- 5-gain selectable amplifier for the slow current integrator



3 in 1: - High and low gain analog outputs - Charge injection calibration - Integrator to read out Cs calibration data Eduardo Valdes S... PhD

Introduction... Upgrade... LVPS + HV OPTO... <sup>1</sup>3 in 1 + MB...

<sup>3</sup>QIE... Daughterboard...

<sup>2</sup>FATALIC...

Tile Preprocessor...

Radiation Tolerance...

Conclusions...

# Timeline $(^{8}/_{21})$

# 

Timeline  $(^{9}/_{21})$ 

# 3 in 1 Front end cards + Mainboard...



| Introduction             |
|--------------------------|
| Upgrade…                 |
| LVPS + HV OPTO           |
| <sup>1</sup> 3 in 1 + MB |
| <sup>2</sup> FATALIC     |
| <sup>3</sup> QIE         |
| Daughterboard            |
| Tile Preprocessor        |
| Radiation Tolerance.     |
| Conclusions              |

- interfaces the front end cards to the Daughter Board.
- two independent symmetric parts.
- each part reading out all cells.
- Supply low voltage levels to frontend cards and Daughter Board.
- Digitize fast and slow signals, and send parallel streams to the Daughter Board.
- Set gains on 3-in-1 frontend cards.
- Control DAC for charge injection calibration.



Eduardo Valdes S... PhD 🔹



# Front-end ATIAs tiLe Integrated Circuit (FATALIC)







- Potentially low noise chip.
- Most functionality in ASIC.
- 3 signal paths for analog processing.
- 3 embedded 12-bits ADCs
- Auto Gain Selection (Medium + (High or Low))
- 2 x12 bits data output (2 gains)

Timeline (<sup>11</sup>/<sub>21</sub>) Introduction... Upgrade... LVPS + HV OPTO... <sup>1</sup>3 in 1 + MB... <sup>2</sup>FATALIC... <sup>3</sup>QIE... Daughterboard... Tile Preprocessor...

CERN

Radiation Tolerance...

Conclusions...

Timeline  $(^{12}/_{21})$ 

(CERN)

# Calibration tests... Pulse Analysis...



# QIE Front End Board







- "Current Splitter" with gated integrator
- 4-range Charge Integrator
- 17 bits of dynamic range
- 5 bits Internal TDC -> 1 ns resolution
- (4) 16-bit DACs for calibration
- No Pulse Shaping
- Dead-timeless Digitization at 40 MHz
- Pipelined operation
- Radiation tolerant (SiGe for TID; SEU-tolerant design)

| Timeline ( <sup>13</sup> / <sub>21</sub> ) |
|--------------------------------------------|
| Introduction                               |
| Upgrade…                                   |
| LVPS + HV OPTO                             |
| <sup>1</sup> 3 in 1 + MB…                  |
| <sup>2</sup> FATALIC                       |
| <sup>3</sup> QIE                           |
| Daughterboard                              |
| Tile Preprocessor                          |
| Radiation Tolerance                        |
| Conclusions                                |

SiGe: Silicon-Germanium TID: Total Ionizing Dose SEU: Single Event Upsets TDC: Time to Digital Converter

Eduardo Valdes S... PhD 🔵

# Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC. Tests and calibration...



CERN

Tile Preprocessor...

Introduction...

Timeline  $(^{14}/_{21})$ 

Radiation Tolerance...

|                    | Upgrade of Tile Calorimeter | of the ATLAS detector for the High Luminosity LHC.                                                                                                                                                               |                                                                                                                                    |
|--------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Daughterboard (r4) |                             |                                                                                                                                                                                                                  | Timeline ( <sup>15</sup> / <sub>21</sub> )                                                                                         |
|                    | Double Redundancy           |                                                                                                                                                                                                                  | Introduction<br>Upgrade                                                                                                            |
|                    |                             |                                                                                                                                                                                                                  | LVPS + HV OPTO                                                                                                                     |
|                    | Power Circuitry             |                                                                                                                                                                                                                  | <sup>1</sup> 3 in 1 + MB                                                                                                           |
|                    | ,                           |                                                                                                                                                                                                                  | <sup>3</sup> QIE                                                                                                                   |
|                    | 1                           | <ul> <li>Control and communication of the front end with back end.</li> </ul>                                                                                                                                    | Daughterboard                                                                                                                      |
|                    | Cs Connectors 🛃             | - Mainboards                                                                                                                                                                                                     | Tile Preprocessor                                                                                                                  |
|                    |                             | - HV Opto                                                                                                                                                                                                        | Radiation Tolerance                                                                                                                |
|                    | HV Opto Connectors          | - Cesium Calibration System                                                                                                                                                                                      |                                                                                                                                    |
|                    | Kintex 7 FPGAs              | <ul> <li>Common front end and read out interface for all the alternatives.</li> <li>System Clock recovery and distribution to the front end.</li> <li>Daughterboard current and temperature monitoring</li></ul> |                                                                                                                                    |
|                    | GBTx Chips 💶                | • High Speed communication: uplink (4x 9.6Gbps) and<br>downlink (4x 4.8Gbps) with back end via one of the two<br>QSFP (including additional 2 fold redundancy).                                                  | PGA: Field Programmable<br>rray<br>TC: Trigger Timing and<br>ontrol<br>SFP: Quad Small Form-<br>actor Pluggable<br>V: High Voltage |
|                    | QSFP connectors             | C<br>C<br>C<br>D<br>D<br>H                                                                                                                                                                                       | bix: radiation tolerant<br>nip with 3.2-4.48 Gbps<br>ommunication via<br>idirectional optic links for<br>ligh Energy Physics.      |

Eduardo Valdes S... PhD •

# Tile Preprocessor Prototype (Off Detector)...

- Readout data coming from the detector
  - □ 4 Mini-Drawers
  - □ Up to 48 PMTs
- TTC distribution to the front-end electronics
  - □ Clock distribution for sync
- Communication with the Detector Control System (DCS)
  - □ Front-end electronics monitoring and configuration commands
- Keeps backward compatibility with the present DAQ system
  - □ G-Link to Legacy System
  - $\hfill\square$  TTC decoding and clock recovery
- Real time data processing

-

- □ Reconstruction algorithms: energy, time and quality factor
- Communication with the L0/L1 trigger system
  - □ Sending preprocessed data for L0/L1 trigger decision



Timeline (<sup>16</sup>/<sub>21</sub>) Introduction... Upgrade... LVPS + HV OPTO... <sup>1</sup>3 in 1 + MB... <sup>2</sup>FATALIC... <sup>3</sup>QIE... Daughterboard... Tile Preprocessor... Radiation Tolerance...

Conclusions...

ROD: Read Out Driver TTC: Trigger Timing and Control DCS: Detector Control System L1Calo: Level 1 Calorimeter trigger. LX: Level X trigger QSFP: Quad Small Formfactor Pluggable PMT: Photomultiplier Tube FMC: FPGA Mezzanine Card. SerDes: Serializer / Deserializer.



# Latest configuration in action...Reliability...

| 2MARCA         |                |               | MD SIDE              | Number of frames<br>3945304944526 | - CRC Frame E             | rrors - Fract                 | ion per million -<br>0 000000e+00         | Bit Error Rate -                     | Effective Errors                |
|----------------|----------------|---------------|----------------------|-----------------------------------|---------------------------|-------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|
|                |                |               | 0 SideA1<br>0 SideB0 | 3945304944526<br>3945304944526    | 0                         | 0                             | 0.000000e+00<br>0.000000e+00              | 0                                    |                                 |
|                |                | 1/K           | 0 SideB1             | 3945304944526                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                | (TA)           | 114           | 1 SideA0             | 3945306801678                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                | (A)            |               | 1 SideA1             | 3943306801678                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                | and the second | IT BAR        | 1 SideB1             | 3945306801678                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                |                | have a second | 2 SideA0             | 3945306823552                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                |                |               | 2 SideA1             | 3945306823552                     | Ő                         | 0                             | 0.000000e+00                              | ŏ                                    |                                 |
|                |                |               | // 2 SideB0          | 3945306823552                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                |                |               | 2 SideB1             | 3945306823552                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                |                |               | 3 SideA0             | 3945306840271                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                |                |               | 3 SideA1             | 3945306840271                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                |                |               | 3 SideB0             | 3945306840271                     | 2                         | 0                             | 4.224429e-15                              | 0                                    |                                 |
| ARE REAL       |                |               | 3 SideB1             | 3945306840271                     | 0                         | 0                             | 0.000000e+00                              | 0                                    |                                 |
|                |                |               |                      |                                   | • 4<br>inc<br>cor<br>effe | 8 Ho<br>Iudin<br>mmu<br>ectiv | urs cor<br>og CRC<br>nicatior<br>e errors | ntinuous<br>checki<br>n stabil<br>s. | s test<br>ng and<br>ity with no |
| 5853 and and a | Demonstrator   | SuperDr       | awer                 |                                   | On-detector               | Off-detector                  |                                           | Tatal                                |                                 |
|                | MiniDrawor Min | Drowor Mir    | Drowor               | MiniDrow                          | or l                      |                               |                                           | lotal d                              | ata rate                        |

| Demonst                                         |                                                 | SuperDrawer                                     | On-detector                         | Off-detector                  |
|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------|-------------------------------|
| MiniDrawer                                      | MiniDrawer                                      | MiniDrawer                                      | MiniDrawer                          | L 1Calo                       |
|                                                 |                                                 |                                                 |                                     | Down link                     |
| Adder base poard<br>MainBoard Daughter<br>Board | Adder base board<br>MainBoard Daughter<br>Board | Adder base board<br>MainBoard Daughter<br>Board | Adder base board<br>MainBoard Board | 4.8 Gb/s<br>uplink<br>10 Gb/s |
|                                                 |                                                 |                                                 |                                     | Tile ROD Proprocess           |
| HVPS MiniDrawset                                | HVPS MinQrawe                                   | HVPS                                            | HVPS<br>MiniQrawer                  | HV                            |
|                                                 |                                                 | LVPS                                            |                                     | CAN<br>converter DCS/CAN      |

| Total data rate            | ~80 Tb/s   |
|----------------------------|------------|
| Number of links            | 4096       |
| Data rate per link         | 10 Gb/s    |
| Links per super-drawer     | 4x4 (+4x4) |
| Data rate per super-drawer | 160 Gb/s   |

Introduction...

<sup>1</sup>3 in 1 + MB... <sup>2</sup>FATALIC...

Daughterboard... Tile Preprocessor... Radiation Tolerance...

Conclusions...

<sup>3</sup>QIE...

Upgrade...

Timeline (<sup>18</sup>/<sub>21</sub>)

CERN

LVPS + HV OPTO...

Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC.

# Linearity tests...



Timeline  $(^{19}/_{21})$ 

CERN

# Some words about Radiation Tolerance...



|   | TID         | NIEL        | SEE         |                     |
|---|-------------|-------------|-------------|---------------------|
| s | Done - OK   | Not done    | Not done    | Need different -5V  |
|   | Preliminary | Pending     | Preliminary | More testing needed |
|   | Not done    | Pending     | Not Done    | Size limitations    |
|   | Not done    | Pending     | Done – OK   | More testing needed |
|   | Done – OK   | Pending     | Done – OK   | Good to go          |
|   | Done – OK   | Done – OK   | Done – OK   | Good to go          |
|   | Done (v7.5) | Done (v7.5) | Done (v7.5) | Needs full testing  |
|   | Not needed  | Not needed  | Not needed  | Testing not needed  |
|   | Done        | Done        | Not needed  | Good to go          |
|   | Not done    | Not done    | Not done    | Not started         |
|   | Not done    | Not done    | Not done    | Not started         |
|   | Preliminary |             |             | More tests needed   |

| Introduction             |
|--------------------------|
| Upgrade…                 |
| LVPS + HV OPTO           |
| <sup>1</sup> 3 in 1 + MB |
| <sup>2</sup> FATALIC     |
| <sup>3</sup> QIE         |
| Daughterboard            |
| Tile Preprocessor        |
| Radiation Tolerance      |
| Conclusions              |
|                          |

- Perform radiation tests to the system parts.
- Double Redundancy in the electronic design.
- Use of Radiation Tolerant components.
- Use of triple redundancy mode (TMR) in the FPGAs.
- Link Redundancy.
- Upstream Data Protection: CRC.
- Downstream Data Protection: GBT with FEC.

TID: Total Ionizing Dose SEE: Single Event Effects NIEL: Non ionizing energy Ioss. TMR: Triple Mode redundancy CRC: Cyclic Redundancy Check GBT: GigaBit Transceiver data transmission protocol. FEC: Forward Error Correction. LVPS: Low Voltage Power Supply.

### Eduardo Valdes S... PhD

Timeline  $(^{20}/_{21})$ 

# Conclusions and Questions...



-Better reliability have been achieved with the current version of the demonstrator comparing it to the previous prototypes.

 Validation of front ends alternatives will take place soon in the coming test beams.

 Radiation tests are needed to validate the radiation tolerance of the different parts of the Demonstrator

- A hybrid demonstrator drawer will be ready soon!

Timeline (<sup>21</sup>/<sub>21</sub>)
 Introduction...
 Upgrade...
 LVPS + HV OPTO...
 <sup>1</sup>3 in 1 + MB...
 <sup>2</sup>FATALIC...
 <sup>3</sup>QIE...
 Daughterboard...
 Tile Preprocessor...
 Radiation Tolerance...
 Conclusions...