On-the-fly scale variations in SHERPA

Marek Schönherr

Universität Zürich

Sherpa Meeting, 07/01/2016

FONDS NATIONAL SUISSE Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

・ロト ・回ト ・ヨト ・ヨト

3

Scale variations in SHERPA

Which scales are there?

- renormalisation and factorisation scales (μ_R , μ_F) of matrix elements \rightarrow can be reweighted, leads to same event kinematics SCALES METS{FSF*MU_F2}{RSF*MU_R2}{QSF*MU_Q2};
- resummation scale or parton shower starting scale (μ_Q) \rightarrow cannot be reweighted, leads to different event kinematics SCALES METS{FSF*MU_F2}{RSF*MU_R2}{QSF*MU_Q2};
- multijet merging scale (Q_{cut}) \rightarrow cannot be reweighted, leads to different event kinematics CKKW sqr(20./E_CMS);
- PDFs

 \rightarrow PDFs in matrix elements can be reweighted, but not in shower PDF_LIBRARY LHAPDFSherpa; PDF_SET NNPDF30_nnlo_as_0118;

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Scale variations in SHERPA

Explicit variations:

- can be done for any scale or PDF dependence
- functional form can be changed
- separate runs with changed input

On-the-fly variations:

- can be done for $\mu_{R|F}$ and PDF dependence of matrix elements
- functional form can currently not be changed
- full syntax cf. Manual, simplified syntax:

SCALE_VARIATIONS 0.25,0.25 0.25,1. 1.,0.25 1.,1. 1.,4. 4.,1. 4.,4.;
PDF_VARIATIONS NNPDF30_nnlo_as_0118[all];

 stored in HepMC::WeightContainer in LH naming convention MUR<fac>_MUF<fac>_PDF<id>LH'13 arXiv:1405.1067

Scale variations in SHERPA

Disclaimer

- On-the-fly scale variations in SHERPA-2.2.0 limited to
 - fixed-order calculations LO, NLO
 - matched calculations LOPS, NLOPS (S-MC@NLO)
 - multijet merged calculations MEPS
- on the way for MENLOPS, MEPS@NLO, NNLOPS (UN²LOPS)

Examples

- $pp \rightarrow t\bar{t}W$ with S-Mc@NLO
- $pp \rightarrow \ell^+ \ell^- + \leq$ 4 jets with MEPS

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Scale variations in $pp \rightarrow t\bar{t}W^+$ (S-MC@NLO)

SCALE_VARIATIONS 0.25,0.25 0.25,1. 1.,0.25 1.,1. 1.,4. 4.,1. 4.,4.;

 \Rightarrow explicit $\mu_{R|F}$ -variations exactly reproduced by on-the-fly variations ($\mu_{R|F}$ in parton shower not included, as usual)

3

・ロト ・回ト ・ヨト ・ヨト

- \Rightarrow on-the-fly only varies PDF in ME varied, not in parton shower
 - \rightarrow only part of the uncertainty
- \Rightarrow explicit changes PDF in matrix elements and in parton shower
 - \rightarrow full PDF uncertainty, does not yield identical events
 - \rightarrow careful not to envelope statistical fluctuations (as above maybe)
- \Rightarrow on-the-fly variation has different PDFs in ME and parton shower

PDF4LHC (old) variations in $pp \rightarrow t\bar{t}W^+$ (S-Mc@NLO)

 \Rightarrow combine with scale and α_s variation to arrive at full PDF4LHC unc. central value + 217 variations (208 PDFs + 7 scales + 2 α_s)

Timings in $pp \rightarrow \ell^+ \ell^- + \leq$ 4jets (particle level simulation)

weighted events

- low baseline per event timing (25s/1k)
- constant offset per computed variation
- \Rightarrow 217 vars. \rightarrow factor 38

(partially) unweighted events

- high baseline per event timing (730s/1k)
- constant offset per computed variation
- \Rightarrow 217 vars. \rightarrow factor 2.2

- \rightarrow time to compute variations independent of event generation mode
- \Rightarrow huge gain for standard (partially) unweighted events

э

Conclusion

SHERPA-2.2.0

- on-the-fly weight variation calculation available
- currently limited to
 - fixed-order calculations LO, NLO
 - matched calculations LOPS, NLOPS (S-MC@NLO)
 - multijet merged calculations MEPS
- on the way for MENLOPS, MEPS@NLO, NNLOPS (UN²LOPS)

• syntax:

SCALE_VARIATIONS 0.25,0.25 0.25,1. 1.,0.25 1.,1. 1.,4. 4.,1. 4.,4.; PDF_VARIATIONS NNPDF30_nnlo_as_0118[all];

- scale variations currently supported for constant factors
 - \rightarrow HepMC output optionally contains all ingredients for arbitrary variations

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Thank you for your attention!