GAS ELECTRON MULTIPLIER

GAS ELECTRON MULTIPLIER DETECTORS: PERFORMANCES AND APPLICATIONS Fabio SAULI MPGD WORKSHOP CERN, January 20, 2006

http://gdd.web.cern.ch/GDD/

GEM

GEM FOILS GEM 2 THIN METAL-COATED POLYMER FOIL CHEMICALLY ETCHED WITH 5-100 HOLES mm² Typically: 50 µm Kapton 5 µm Copper 70 µm holes at 140 µm pitch

O JESSE/EST Date :3 Sep 200

F.Bauli/EP

5 µm

GUESSE/EST Date: 13 Sep 20

70

μm

55

μm

168.97 µm

MANUFACTURED BY CERN-TS-DEM (Rui De Oliveira)

F. Sauli, NIMA 386(1997)531

Mag = 200 X EHT = 15.00 kV Detector = SE1

OPERATING PRINCIPLES

AMPLIFICATION AND TRANSFER SINGLE GEM DETECTOR:

INDEPENDENT PROPORTIONAL COUNTERS (~ 50/mm²) → HIGH RATE CAPABILITY

HIGH VOLTAGE ELECTRODE SEPARATED FROM READOUT ➤> ROBUSTNESS

FAST ELECTRON SIGNAL ONLY HIGH RATES, GOOD TWO-TRACK RESOLUTION

READOUT ELECTRODE: ARBITRARY PATTERN

GEM (

MULTIGEM

MULTIPLE GEM DETECTORS: HIGHER GAIN LOWER OPERATING VOLTAGE AND/OR SAFER OPERATION

UP TO 5 CASCADED GEMS TESTED (for single photoelectron detection) Voltages provided by resistor chain

GEM SHAPES

WIDE RANGE OF SHAPES AND SIZES 1500 ÷2000 foils manufactured at CERN 1 cm² to 1000 cm² 30-200 μm holes, 50-300 μm pitch

"Standard" GEM: 10x10 cm² (available in CERN stockroom)

Nuclear Magnetic Spectrometer (Osaka Univ.)

COMPASS GEM 31x31 cm²

GEM

GEM SHAPES

GEM 6

Round GEM (30 cm Ø) ESA prototype

Half-Moon (TOTEM T2)

READOUT PATTERNS

VARIOUS READOUT PATTERNS ON ANODE:

STIPS AND PADS (TOTEM):

GEM

GEM DETECTORS

SIMPLE, LIGHT CONSTRUCTION COMPASS Triple-GEM detector 31x31 cm² active, 2-D readout:

22 detectors operational

Thickness ~ 0.7% X_0 in active area

Can be reduced to ~ 0.15% X₀ A. Bondar et al, NIMA 556(2006)495

TOTEM Triple-GEM (Forward CMS) 30 cm Ø, strips&pads readout

50 detectors in construction

GEM

NON-PLANAR

CYLINDRICAL GEM DETECTOR CERN-PH-DT2 (NA49 UPGRADE?)

GEM

GEM PERFORMANCES

GEM

GEM PERFORMANCES

GEM 12

LOW TEMPERATURE NOBLE GASES:

GAIN PERFORMANCES

GEM

13

MULTIGEM: HIGH GAINS IN HOSTILE ENVIRONMENT DISCHARGE PROBABILITY ON EXPOSURE TO 5 MeV α (from internal ²²⁰Rn gas) Multigem gain-discharge 1 10-4 10⁵ 8 DISCHARGE PROBABILITY ON EFFECTIVE GAIN TEST AT PSI π M1 beam: No discharges in 12 hrs of 10⁻⁵ 10⁴ operation at gain 10⁴ TRIPLE GEM (and 4 years of operation in COMPASS!) **DOUBLE GEM** 10⁻⁶ 10³ 10^{-8} discharge probability Triple GEM SINGLE GEM 10^{-9} Ar / CO₂ (70 / 30) 10-10 G=8000 10⁻⁷ 10² 360 380 400 420 440 460 480 500 520 10-11 **AV ON EACH GEM (V)** 10⁻¹² S. Bachmann et al, NIMA 479(2002)294 no discharges observed 10⁻¹³ 10^{4} 10^{5} gain S. Bachmann et al, NIMA 470(2001)548

ENERGY RESOLUTION

GEM DETECTORS PERFORMANCE: ENERGY RESOLUTION AND GAIN UNIFORMITY

5.9 keV ⁵⁵Fe : 20% FWHM

(Hole's diameter tolerance: \pm 2.5 μ m)

COMPASS CHAMBERS ($31x31 \text{ cm}^2$) PH spectra on 9 keV X-rays in 16 points Maximum gain variation \pm 15%

GEM

POSITION RESOLUTION

RESIDUALS FOR MINIMUM IONIZING PARTICLES (COMPASS TRACKER):

SINGLE PHOTOELECTRON (CsI-Coated T-GEM) Center of gravity distribution for two UV light beams, 200 µm apart:

GEM

RATE CAPABILITY

RATE CAPABILITY (5.9 keV X-rays): > 2.10⁶ mm⁻²

J. Benlloch et al, IEEE NS-45(1998)234

EFFICIENCY IN RUNNING CONDITIONS (COMPASS TGEM TRACKER) ~ 97.2 % High intensity runs (25 kHz mm⁻²)

GEM

TIME RESOLUTION

GEM

RADIATION RESISTANCE

GEM

COMPASS GEM 19 TRIPLE GEM TRACKER FOR COMPASS (NA58) COMPA High rate forward spectrometer: ~ 5.10⁷ polarized 160 GeV μ^+ /s on polarized ⁶LiD target polarized target SM1 RICH1 µ filter 1 SM2 RICH2 μ filter 2 ECAL2 HCAL2 CALL HCALL 🔜 Tracking 🔜 RICH Magnets u filter ECAL HCAL 22 Detectors, 31x31 cm² active area 2-D Analogue readout (APV25) Data taking since 2001 http://wwwcompass.cern.ch/ COMPASS TRIPLE-GEM CHAMBERS Light all-glued construction: 0.7% X₀ in active area

Bernhard Ketzer

C. Altumbas et al, NIMA 490(2002)177

TOTEM

GEM 21

Half-Moon Triple-GEM chambers Inner Ø: 80 mm Outer Ø 300 mm 40 Detectors in construction (Helsinki-CERN)

BONUS

GEM 23

QUALITY CONTROL

GEM 25

GEM TPC

GEM TPC FOR THE INTERNATIONAL LINEAR COLLIDER

ADVANTAGES OF GEM READOUT:

- Fast signals (no ion tail): $\Delta T \sim 20$ ns
- Narrow pad response function: ∆s ~ 1 mm
- Very good multi-track resolution: ΔV ~ 1 mm³ (Standard MWPC TPC ~ 1 cm³)
- Ion feedback suppression: I+/I- < 0.1%
- No ExB distortions
- Freedom in end-cap shapes
- Robust, radiation resistant

ILC TPC R&D GROUPS (~ 40): DESY, Aachen, Karlsruhe, LBL, Saclay, Orsay, Vancouver, Carleton, KEK,.....

> TPC: 250 cm long, 140 cm radius ~ 40 m³ 4 T operation

GEM TPC

DESY GEM-TPC: 80 cm drift

AACHEN GEM-TPC:

2.2x6.2 mm² pads readout

GEM (27)

ION FEEDBACK

GEM (29)

GEM ION GATING

GEM 31

? GEM CHARGE TRANSMISSION INTO LOW FIELDS

GEM ION GATING

GEM

ELECTRON AND ION DIFFUSION

GEM

ION BACKFLOW

GEM 35

PHOTON DETECTION

PHOTON DETECTION WITH GEM

Reflective Photocathode deposited on upper GEM face

GEM

Ar/N₂ (98/2)

Ar/CH₄ (95/5)

Hg lamp

185 nm

3.0

3.5

2.5

 ∇

PHOTON DETECTION

TRIPLE-GEM WITH CsI PHOTOCATHODE

Single photoelectron PH spectrum:

Single photoelectron space accuracy Center-of-gravity distribution for two collimated UV beam positions, 200 µm apart:

T. Meinschad, L. Ropelewski and F. Sauli, NIMA 535(2004)324

PHOTON DETECTION

HEXABOARD READOUT

Hexagonal pad rows, 500 µm Ø Interconnected along three directions:

S. Bachman et al, NIMA 478(2002)104 F. Sauli, NIMA 553(2005)18

DOUBLE PHOTON EVENT:

GEM 39

CRYOGENIC GEM DETECTORS

GEM

TWO-PHASES GEM DETECTORS

EXTRACTION FROM LIQUID AND MULTIPLICATION IN GAS PHASE

XENON: Dark Matter and WIMPs search

EXTRACTION AND MULTIPLICATION IN Kr:

A. Bondar et al, NIMA 548(2005)439

GEM

MEDIPIX READOUT

CONCLUSIONS AND FUTURE WORK

RESEARCH GOALS FOR THE NEAR FUTURE

IMPROVE MANUFACTURING AND TESTING TECHNOLOGY:

- AUTOMATIC TEST FACILITIES
- REPLACE PLASTIC MASKS WITH GLASS (BETTER UNIFORMITY, LARGER SIZES)
- FIND A RELIABLE SECOND SOURCE: TECHETCH, 3M, JAPAN

DEDICATED READOUT ELECTRONICS:

- ADD INTEGRATED DISCHARGE PROTECTION
- FASTER INPUT AMPLIFIERS (5÷10 ns SHAPING)
- FRONT-END DATA REDUCTION (COG, ZERO SUPPRESSION,....)
- PIXEL READOUT, ACTIVE PIXEL ELECTRONICS

OPTIMIZE VERY HIGH RATE PERFORMANCES:

- EXTEND AGING LIMIT

- USE RAD-HARD AND NON-OUTGASSING MATERIALS

GEM

