

# The GEM-TPC for the ILC

Stefan Roth, RWTH Aachen



## Precision Measurement of Higgs



required momentum resolution:  $\Delta(1/p_t) < 5 \cdot 10^{-5} \text{ GeV}^{-1}$ 

(CMS-Tracker:  $\Delta(1/p_t) \approx 1.5 \cdot 10^{-4} \text{ GeV}^{-1}$ )

## Why using a Drift Chamber?

#### Advantage of TPC versus full-silicon tracker à la CMS :

- small material budget in front of precision calorimeter
- little multiple scattering improves momentum resolution
- measurement of dE/dx
- efficient pattern recongnition

drift chamber (TPC)



silicon detector



much smaller particle rates than at the LHC!

### ILC - International Linear Collider

Design based on "cold technology"
 TESLA - TeV Energy Superconducting Linear Accelerator

• CM energy: 90 – 1000 GeV

• Luminosity:  $3x10^{34}$  cm<sup>-2</sup> s<sup>-1</sup> (ca. 5000 x LEP)

• Time structure: 1 ms long bunch trains with 5 Hz

• Bunch separation: 337 ns





## **Timing**



- continuous TPC read-out during bunch train (2820 BX)
- no hardware trigger
- 1 ms of raw data in front end



- z coordinate
- event tag



### Ion Back-Drift

LEP: Gating between bunches  $\Delta t = 22 \mu s$ 



ILC: Length of bunch train  $2820 \times 337 \text{ ns} = 950 \mu \text{s}$ 

Drift time is about 50 µs, no Gating between individual events possible



# Ion Back-Drift in Magnetic Field



Measurements in 5 T magnet

Anode current increases with magnetic field

Explained by increased extraction efficiency

Ion back-drift = I<sub>Cathode</sub> / I<sub>Anode</sub>



### Minimisation of Ion Back-Drift

Search for GEM setting with minimum Ion back-drift

Important: Remove ions at place of origin!

• Ideal case: back-drifting ioncharge ≤ primary ionisation

relative ion back-drift ≤ 1 / gas-gain



# Gating after Spills

Slow Ion mobility: Place additional GEM above Readout system

Important: Distance large enough to cover ions of 1 ms bunch trains

• End of train: Reverse voltage at GEM to hold off ions from drift region



## Construction of Prototypes

Al Foil, 0.05 mm • Compact design to fit into test magnet GFK, 0.25 mm • Material budget only 1% X<sub>0</sub> Aramid Honeycomb, 5 mm 4 x 0.125 mm Kapton >Epoxy Resin Cu Strips, 0.03 mm, 2.8 mm Pitch Al Føil 0.06 % Cu Strips 0.29 % Glass Fibre 0.23% Honeycomb 0.06 % Kapton 0.20 % Epoxy Resin 0.14 %

## Cosmics in Magnetic Field





#### Measurements with DESY-Prototype

- Improvement of spatial resolution for high magnetic fields Reduction of transversal diffusion
- At 4 T magnetic field the spatial resolution is dominated by read-out structure

### Measurements with UV-Laser

Victoria University / DESY



Laser beam integrated into TPC

Measurements in 4 T magnetic field



### Tracks from UV Laser

#### Scan of laser beam:



- Split of laser beam:
- only beam 1 only beam 2 both beams



- very stable beam position RMS < 4 μm over 20 min
- Spatial resolution ca. 75 µm



Double track resolution: ca. 3 mm for 2 mm pads

# Study of Pad Geometries



Uni Karlsruhe / DESY

TPC prototype with different pad geometries (typical size 2x6 mm)





5.6 GeV e<sup>+</sup> test beam at DESY Prototype TPC in 1 T magnet

## General Purpose TPC Readout Chip

CERN (L. Musa et al.):

- Number of readout channels: 32 or 64
- Programmable charge amplifier: charge in the range:  $\sim 10^2 \sim 10^7$  electrons
- high-speed high-resolution A/D converter
- → Upgrade of ALTRO chip used for ALICE TPC

Low-noise Amplifier (CMOS 0.13 µm) already designed



### Silicon Read-Out

- MediPix 2 pixel detector (CERN development)
- Remove silicon sensor
- Use read-out electronics to detect GEM signal





# GEM Read-Out with Medipix-Chip

### Uni Freiburg / NIKHEF:





### From MediPix to TimePix

CERN (M. Campbell et al.), NIKHEF, Napoli, Prague:

- Include timing information: Develop TimePix readout chip with only small modifications to MediPix to avoid failures in chip design
- Brainstorming meetings at CERN
- Use "pixel arrival time" and "time over threshold"
- Two possible timestamp methods under study:
  - local oscillator per pixel
  - clock sent to all pixels

## Summary and Outlook

- Relative ion back-drift at the level of 2 permille reached
- Additional options for ion suppression under study
- Field cage prototypes constructed
- First measurements of spatial resolution are promising

- Design and construction of a large prototype (EUDET)
- Measurements in electron and hadron test beams
- Study of various read-out planes (GEM, Micromegas, Si-GEM)
- Decision on the final TPC design