2016 Aspen Winter Conference on Particle Physics

CMS Searches Beyond SUSY

Keti Kaadze Kansas State University on behalf of the CMS Collaboration

Partícle Physics on the Verge of Another Discovery?

10-17 January, 2016

• Higgs discovery was a triumph of Run 1 of LHC, but...

ÉRN

Non-SUSY Searches = ?

- Many interesting theories and interesting experimental signatures are explored at CMS
 - SUSY searches make only sub-set of a quest for new phenomena at CMS
 - EXOTICS and B2G groups at CMS pursue vibrant program for signature-based searches
 - Each signature provides a different window into BSM

• Sometimes these also could have SUSY signal interpretations

4

Dijet Resonances

5

Kețí Kaadze, KSU

Looking for a narrow bump above steeply falling M_{jj} spectrum

• di-jet event with highest invariant mass

6

7

Hierarchy problem: Why gravity is so weak compared to other forces?

R

Arkani-Hamed, Demopulos, Dvali (ADD) model – Gravity propagates through extra 4+n dim. making it appear weak in 4-dim.

- Search for BHs decaying in all possible final states
 - \sim 75% of all are multijet or dijet events
 - Look for broad excess in S_T distribution •
 - Jets, electrons, muons, photons, MET

Keți Kaadze, KSU

• Display of an event with 12 jets: ST = 5.48 TeV, MET = 120 GeV

12 January 2016

8

- Semiclassical black holes $M_{BH} >> M_D$ Quantum black holes $M_{BH} >~ M_D$
 - $M_D = 4$ TeV, n = 6
 - $M_{BH} > 8.7 \text{ TeV}$ (Obs.)

- - n = 6
 - $M_{BH} > 8 \text{ TeV}$ (Obs.)

Run 1: 4.3 – 6.2 TeV

12 January 2016

More on dijet signatures

- Angular distribution of dijets allow to probe quark substructure and additional spatial dimensions
 - $\chi_{\text{dijet}} = \exp(|y_1 y_2|)$, where $y = 1/2\ln[(E + p_z)/(E p_z)]$

Limits set on Λ CI scale and Λ_T and M_S ADD parameters; $M_{s} \sim M_{D}$

Compositeness model	Observed lower limit (TeV)	Expected lower limit (TeV)
Compositeness model	Observed lower mint (lev)	Expected lower lilling (lev)
$\Lambda^+_{LL/RR}$ (LO)	12.1	12.0 ± 1.1
$\Lambda_{LL/RR}^{-}$ (LO)	16.3	15.3 ± 2.4
ADD Λ_T (GRW)	9.1	9.0 ± 0.7
ADD M_S (HLZ) $n_{ED} = 2$	9.7	9.6 ± 0.7
ADD M_S (HLZ) $n_{ED} = 3$	10.8	10.7 ± 0.8
ADD M_S (HLZ) $n_{ED} = 4$	9.2	9.0 ± 0.7
ADD M_S (HLZ) $n_{ED} = 5$	8.3	8.1 ± 0.6
ADD M_S (HLZ) $n_{ED} = 6$	7.7	7.6 ± 0.6

Run 1: $M_D > 4 - 9$ TeV

Ketí Kaadze, KSU

12 January 2016

CMS-PAS-EXO-15-009

W' -> 1 + v

CMS-PAS-EXO-15-006

• Search for SSM W' boson

- Assuming SM-like couplings, decay to SM bosons suppressed, no interference with W boson
- Electron/muon + large missing ET

12 January 2016

W'->tb

- If W' is massive enough it decays to pair of top and bottom quarks
 - In some models coupling to third generation could be enhanced
 - Final states with single electron or muon and jets are considered: W'->bb+e/ μ +MET
 - W' invariant mass is reconstructed by constraining neutrino p_z from W mass

ĒRI Dilepton Resonance Search for excess in dielectron/dimuon mass spectrum above very small background 2.6 fb⁻¹ (13 TeV) 2.6 fb⁻¹ (13 TeV ee) + 2.8 fb⁻¹ (13 TeV, $\mu\mu$) 10⁵ 10^{-4} Events / GeV CMS $\mathfrak{I}(pp {\rightarrow} Z' + X {\rightarrow} \mathit{ll} + X)/\sigma(pp {\rightarrow} Z + X {\rightarrow} \mathit{ll} + X)$ 1 1 1 CMS 10⁴ Data obs, width = 0%Preliminarv γ/Z→e⁺e⁻ obs. width = 0.6%Preliminary 10³ obs. width = 3%tt, tW, WW, WZ, ZZ, ττ ----- median, width = 0% 10^{2} Jets median, width = 0.6%Narrow Z' (M_, = 2 TeV) 10⁻⁵ median, width = 3%10

 10^{-6}

 10^{-7}

500

 Z'_{ψ}

1000

expected (TeV)

2.45

2.55

2.80

1500

2000

obs (TeV)

2.75

3.00

3.15

12 January 2016

300

200

1000

2000

m(ee) [GeV]

channel

ee

 $\mu^+\mu^-$

 $ee+\mu^+\mu^-$

10 10^{-2}

 10^{-3} 10^{-4} 10⁻⁵ 10^{-6}

70

Run 1:

100

 $Z'_{SSM\, \sim} 2.9 \ TeV$

 $Z'_{\omega} \sim 2.5 \text{ TeV}$

obs (TeV)

2.40

2.40

2.60

Ketí Kaadze, KSU

CMS-PAS-EXO-15-005

expected (TeV)

2.95

3.05

3.35

3000 335 M [GeV]

3500

Z'_{SSM} (LOx1.3) Z'_{PSI} (LOx1.3)

2500

 Z'_{SSM}

Keți Kaadze, KSU

17

19

Top Quark Partners

- Heavy fermions with q=5e/3 predicted by composite Higgs models to address hierarchy problem
 - Consistent with the Higgs boson observation
 - High multiplicity events with high H_T
 - Consider dilepton and lepton+jets channels

Top Quark Partners

• Different channels and categories are combined to set limits on left-handed and righthanded fermion hypotheses

12 January 2016

CERN

Diphoton Resonances

- Back to Extra Dimension models Already talked about ADD
 - In Randall-Sundrum (RS) model one additional extra dimension joining two branes – Gravity is suppressed by wrap factor Λ~M_{pl}e^{-kRπ}
 - Search for a resonance decaying to pair of photons
 - Extra dim. curvature scale (κ) 0.01–0.2
 - Graviton 0.5 4.5 TeV masses

12 January 2016

22

23

Diphoton Resonance

Kețí Kaadze, KSU

• Diphoton event with $M_{\gamma\gamma} = 745 \text{ GeV}$

12 January 2016

Summary

- A successful year at CMS
 - The first long shutdown was completed
 - ~90% of 13 TeV data was recorded by CMS (~75% with magnetic field)
 - Various improvements in reconstruction and analysis techniques
- Higher energy boosts sensitivity to new physics searches
 - Already 2.2 2.7 fb⁻¹ data allows to probe new phase space of BSM models
 - Small but exciting excess in diphoton final state is seen
- These results are only overture to long quest for all possible BSM signatures based on more Run 2 data!

Keți Kaadze, KSU

Additional Material

Dijet Resonances

- Narrow gg/gq/qq resonance
 - Trigger: HT > 800 GeV or p_T^{jet} > 500 GeV 100% efficient for $m_{ij} > 1.2 \text{ TeV}$
 - $p_{T}^{jet} > 30 \text{ GeV and } |\eta^{jet}| < 2.5$
 - Two wide jets are constructed to reduce • sensitivity to gluon radiation

- Background from t-channel dijet production is reduced by $|\Delta \eta^{jet}| < 1.3$
 - Pythia8(205), tune CUETP8M1, NNPDF2.3LO
- Separate limit is derived for each resonance model due to dependence on mass shape

- Inclusive search with all types of objects in final state
 - Less sensitive to evaporation model
 - Sensitive to different models predicting enhanced emission of gravitons or weakly interacting BH remnants
- Very robust data-driven description of multijet background
 - Use low multiplicity to predict shape in high multiplicity events $N \ge 2, 3$
 - Use low ST region for normalization 1400 – 1200 GeV

Dark Matter

- Event selection
 - Trigger: MET > 90 GeV or miss-HT > 90 GeV
 100% efficient for MET>200 GeV
 - $p_T^{\text{jet}} > 100 \text{ GeV} \text{ and } |\eta^{\text{jet}}| < 2.5$
 - $\Delta \phi^{\text{jets,met}} > 0.5 \text{reduce fake MET}$

- Backgrounds
 - Veto events with b-jet ttbar bkg
 - Veto events with $e/\mu/\tau/\gamma\,$ -- V+jets bkg.
 - Using dilepton, single lepton, and γ+jets to predict MET distirbution in signal region for major bkgs Z(vv)/W(lv) + jets

12 January 2016

Diphoton Resonances

- Two categories: Barrel-Barrel and Barrel-Endcap
- pT(photon) > 75 GeV, Isolated
- Efficiency, scale and resolution calibrated in Z(ee) and high mass DY events

12 January 2016

Keți Kaadze, KSU

Diphoton Resonances II

- Combination is performed assuming narrow RS graviton
 - Results expressed in terms of equivalent 13TeV cross sections
 - Among two analyses at 8 TeV, HIG-14-006 is more sensitive

12 January 2016

Diphoton Resonances III

Compact Mon School

Kețí Kaadze, KSU

- Log-likelihood scan at 750 GeV
 - Results are expressed in terms of equivalent 13TeV cross sections

12 January 2016

Diphoton Resonances IV

- Combined limit improves single analyses sensitivity by 20-30%.
 - Largest excess: $M_G = 750 \text{GeV}$, local significance 3σ
 - global significance < 1.7σ

Diboson Resonances

Ketí Kaadze, KSU

- VV channel
 - AK8 Jet pT>30 GeV, $|\eta| < 3$
 - $|\Delta \eta_{jj}| < 3$
 - M_{jj} > 1000 GeV
 - Definition of low and high purity regions:
 - high-purity (HP) category: $\tau_{21} \leq 0.45$;
 - low-purity (LP) category: $0.45 < \tau_{21} < 0.75$.
- Totally 6 categories:
 - V-jet mass category (WW,WZ,ZZ)
 - LP and HP

- VW channel
 - Lepton $pT(e/\mu) > 120 \text{ GeV} / 53 \text{ GeV}$
 - MET (e/µ) > 80 GeV / 40 GeV
 - Data-driven method in sideband of jet mass distribution
 - $\Delta R(1,J) > \pi/2, \Delta \phi(1,J) > 2, \Delta \phi(MET,J) > 2$
 - Veto events with b-jets
 - Definition of high and low purity regions:
 - high-purity (HP) category: $\tau_{21} \leq 0.6$;
 - low-purity (LP) category: $0.6 < \tau_{21} < 0.75$,
- Totally 8 categories:
 - Electron and muon channel
 - V-jet mass category (WW,WZ,ZZ)
 - LP and HP

Events with M_{jj} in a range 105 – 135 GeV are excluded from this analysis

12 January 2016

37

12 January 2016

CONSCIENCE For the second seco

- Limits set on several HSCP models
 - Gluinos and stops under Split SUSY scenario
 - Lepton-like particles from mGSMB scenario
 - Modified Drell-Yan production of lepton-like fermions

Heavy Stable Charged Particle

12 January 2016

ĖRN

95% CL limit on σ (pb)

CMS-PAS-EXO-15-010