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Naturalness? Baryon Asymmetry? 
Strong CP? Neutrino Mass? Flavor 

Puzzle? Dark Matter?
Unification? Inflation? 
Quantum Gravity? ...
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Where is the New Physics?
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The Hierarchy Problem
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or else we 
start to tune...

Suggests new dynamics at 100 GeV - 1 TeV! 
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Where are the Top Partners?
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Is the Higgs natural?

If yes, then where is the New Physics?
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New Approaches to Higgs Naturalness

1.  Neutral Naturalness

2.  Relaxation

3.  NNaturalness

I’ll focus on 
these two 

today}
Ask Nima for 

details
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Unifying theme: no guarantee to see signals of naturalness at LHC :-(



Neutral Naturalness

Basic idea:  Top partners do not cary color charge
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The Twin Higgs [Chacko, Goh, Harnik ‘05] 

• Mirror copy of the Standard Model  

                                pNGBs -- 4 of these (HA) make up SM HiggsnG = 15� 8 = 7

V (H) = �m2H†H + �(H†H)2

hHi = f

H =

✓
HA

HB

◆

SMA SMB
|HA|2|HB |2

• Higgs sector has an approximate global SU(4) symmetry

• The SM Higgs is a pseudo-Nambu-Goldstone Boson

SU(4) ! SU(3)

• Generalization to larger continuous & discrete symmetries: 
[Craig,Knapen, Longhi ‘14]
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Twin Top

• Enlarge color to SU(3)A ⇥ SU(3)B ⇥ Z2

�t HA QA tcA + �t HB QB tcB
Coupling equality 
enforced by aa Z2

• Yukawa:

respects              - No mass induced for the pNGB HiggsSU(4)⇤2

�3�2
t

8⇥2
�2(|HA|2 + |HB |2) = �3�2

t

8⇥2
�2|H|2Quadratic divergences:

Color neutral, EW neutral fermionic top partners!

Direct searches for top partners evaded
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Folded SUSY

• Scherk-Schwarz: each boundary respects (different) N=1 SUSY, such 
that globally SUSY is completely broken

SU(3)A ⇥ SU(3)B ⇥ SU(2)⇥ U(1)

N = 2 SUSY in the bulk

y = 0 y = ⇡R

N = 1 
SUSY x x N = 1’ 

SUSY
QA ⇠ (3, 1, 2, 1/6), QB ⇠ (1, 3, 2, 1/6),

Hu,d x
Z2(A $ B)

• “A” fields contain a zero mode fermion
• “B” fields contain zero mode sfermion

[Burdman, Chacko, Harnik Goh ‘06]

• Generalization to arbitrary “twist” [Cohen, Craig, Lou, Pinner ‘15]
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Folded Stop

• Top-Yukawa

L �
Z

dy d2✓ �(y) ŷt [Q3AHuU3A +Q3BHuU3B ]

= yt

h
q
(0)
3AHuu

(0)
3A + h.c.

i
+ y2t

h
|q̃(0)3BHu|2 + |ũ(0)

3B ||Hu|2
i

Zero-mode 
top quarks

Zero-mode 
folded top 
squarks

Color neutral, EW charged scalar top partners!

Coupling equality enforced by Z2
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• Quirkly Little Higgs - color neutral, EW charged fermionic top partners  
[Cai, Cheng, Terning ‘08]
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Exotic Higgs Decays

• Mirror symmetric Twin Higgs:

hA ! bB b̄B ! invisible

TwinSM

UV states 5-10 TeV

WB , ZB

tB

bB

hA

tA

WA, ZA

bA

[Chacko, Goh, Harnik ‘05] 

• Higgs portal coupling                               |HA|2|HB |2
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• Fraternal Twin Higgs

TwinSM

UV states 5-10 TeV

WB , ZB

tB

hA

tA

WA, ZA

bA

[Craig,Katz,Strassler, Sundrum ‘14]

• Naturalness does not require light twin states
• Cosmology constraints light twin states

glueballs 
bottomonia

hA ! GB ! bAb̄A, ...

• Twin hadron decays can be displaced

• Similar glueball signatures possible 
in Folded SUSY models

• Higgs decays mediated by EW charged top 
partner loops

[Curtin, Verhaaren, ’15]

Exotic Higgs Decays
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Future colliders

top partners

• Naturalness implies irreducible shift in e+e-       Zh

• Future precision electroweak tests:

• Twin Higgs:         corrections to Higgs couplings; 

• Future hadron collider can probe colored states in 
the UV completions 

• Folded SUSY:  folded stop contributions to T parameter; 500 -1000 GeV

v/f f > 1� 5TeV

[Fan, Reece, Wang, ’14]

[see, e.g. Curtin, Saraswat ’15]

[Craig, Englert, McCullough, 13]



There are other compelling empirical hints for new 
neutral particles in Nature!

Dark Matter Neutrino Mass

Can the new neutral states responsible for naturalness 
explain these empirical mysteries?
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The Dark Top [Poland, Thaler ’08]
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Dark Matter particles are the Top Partners
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Twin Dark Matter
[Garcia Garcia, Lasenby, March-Russell]
[Craig, Katz]
[Farina]
[see also earlier work on Mirror-DM by Foot, ...]

• Many potential DM candidates in the Twin sector

• Provides an attractive framework for Asymmetric Dark Matter

• Z2 symmetry provides rationale 
for the similarity of QCD and dark 
QCD confinement scales

• UV completion required at ~ 
10 TeV scale; can provide 
transfer operators

• Twin   , twin baryons, twin atoms, ...⌧

Farina
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Natural Neutrinos

Naturalness

See-saw

f
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• •h ht, . . .

t
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λtf
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ytf ytfM c
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H H

Right Handed Neutrinos are the Top Partners

[BB, McCullough ‘15]
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• Naturalness robustly predicts TeV-scale see-saw:

• 2 loop top-gluon 
contribution to Higgs mass: �µ2 =

3y2t g
2
3

4⇥4
�2

Mild tuning of 
order 10% for
� ⇠ 5TeV

L � MNNN c + h.c., MN = �tf +O(v2/f) . TeV

Neutrino mass             twin color SU(3) broken
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• Collective breaking of Lepton number 

• W, Z boson decays (including invisible Z width), Z-pole asymmetries, 
W-boson mass, Weak mixing angle measurements, Lepton flavor 
universality tests (W, tau-lepton and meson decays), Lepton Flavor 
violating decays, Quark Flavor CKM parameters

• Large neutrino Yukawa couplings are possible - PMNS non-unitarity

m� ⇠ y2D v2 M c
M

M2
N



Relaxion [Graham, Kaplan, Rajendran ’15]

Natural weak scale a consequence of dynamics 
in the early universe, not symmetries 

• “Bare” Higgs mass is natural - at the cutoff 

• A field     couples to         and evolves in the early universe 

• After EWSB (                    ) the Higgs backreacts on       

and stops its evolution, fixing                  

 scans the Higgs mass

Basic idea:
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•      has a shift symmetry broken by two effects:

Minimal Model:  SM + QCD axion   

• QCD instantons break  

• Explicit breaking by the coupling      (technically natural)
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Barrier height depends on the Higgs field

Axion potential
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� & M2/g, m2
h(�) > 0Initially,

Evolution of     during inflation

slow rolls due to Hubble friction,�
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Evolution of     during inflation

� ⇠ M2/g, m2
h(�) ⇠ 0

Critical point: EWSB, 
barriers start to grow
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Evolution of     during inflation

gM2 ⇠ ⇤4/f

Stopping

Technically natural
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Inflaton dominates 
energy density:

Classical rolling 
dominates over 

quantum fluctuations: 

27

How large can the cutoff be?



Strong CP problem

• Relaxion displaced from the minimum of the periodic potential:

Two solutions: 

1. Slope (“ g ”) comes from relaxion-inflaton coupling.  After inflation, 

slope relaxes, relaxion rolls to the minimum of the periodic potential 

2. Non-QCD model.  Relaxion is not a QCD axion

28



Fun with numbers
• Coupling: 

• Field excursion (super-Planckian): 

• Number of periods (non-compactness): 

• Hubble (low scale inflation): 

• Number of e-folds of inflation 

see recent works: 
[Kaplan, Rattazzi] 
[Choi, Im]

see recent work by 
[Patil, Schwaller]
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• Relaxion:  good in the IR, bad in the UV! 

• Address little hierarchy and more 

• UV cutoff 107 GeV (105 GeV in non-QCD model) 

• Requires UV completion to protect Higgs mass at all scales

• SUSY:  bad in the IR, good in the UV! 

• No signs of superpartners, Higgs mass suggests heavy scalars 

• Can still address the big hierarchy problem 

• Other UV motivations - unification, quantum gravity, etc.

Combine these frameworks!

But wait, there is more…

Natural Heavy SUSY

30

[BB, Giudice, McCullough ‘15]



Natural Heavy SUSY

• MSSM fields + single chiral multiplet:   
     
• PQ Shift symmetry: 

• General EFT below scale     :  

• SUSY and PQ symmetry preserved, axion potential vanishes, no 
dynamical evolution - must break PQ symmetry…

srelaxion        relaxion          relaxino   

31

[BB, Giudice, McCullough ‘15]



Scanning of SUSY breaking
• Add explicit soft breaking (axion mass) 

The relaxion breaks SUSY!

• As the relaxion evolves, it scans SUSY breaking 

• Relaxino is goldstino (eaten by gravitino) 

• Scanning of SUSY breaking             scanning of Higgs mass matrix 

determinant (EW order parameter)
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1.                ,  gauginos lighter than scalars by one loop 

2.                           , gauginos source SUSY breaking

Scanning Soft Masses

� cag2a
32⇡2

Z
d2✓ SWa Wa Mg̃a ⇡ ↵a

4⇡
F =

↵a

4⇡
ma

• Gaugino Mass 

soft masses scan during 
relaxion evolution

• Scalar Mass 

f2

M2
⇤

Z
d4✓(S + S†)2�†

i�i m̃i ⇡
f

M⇤
ma

M⇤ = f

M⇤ � 4⇡f/↵
Cases:
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Natural Split-SUSY
R-odd

Scalars,Higgsinos

Gauginos

Relaxino (gravitino)

Relaxion

R-even

keV �GeV

SM

10� 100TeV

TeV

UV states at scale f
> 109 GeV

< 10�2 eV 34



LHC Phenomenology
• Scalars, Higgsinos are expected to be heavy, out of reach at LHC

• Gaugino mass are in the TeV range, potentially within reach of LHC 

•           “between 100 microns and journey to the moon”`NLSP

• Lightest gaugino is NLSP - it decays to SM + relaxino.   
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e.g. Bino NLSP
• Gluino decays through off shell squarks, 

B̃ ! �/Z + ã

�(B̃ ! Zã)

�(B̃ ! �ã)
= tan2 ✓W

 
1� m2

Z

m2
B̃

!4

,B̃

�/Z

ã

g̃ ! qq̄B̃

⌧g̃!qq̄B̃ ⇡
✓

m̃

105 GeV

◆4 ✓1 TeV

Mg̃

◆5

10�1 µm/c . (Typically prompt)

• Following gluino decay, Bino decays to relaxino

If measured, could confirm NLSP = bino

• Signatures can be quite striking, e.g.                                  , with 

photons displaced

jjjj + �� +MET
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Outlook

• Higgs Naturalness is being put to the test at the LHC 

• Traditional approaches (SUSY, Composite Higgs) are more and 

more constrained/tuned.  Maybe the weak scale is (mildly) tuned? 

• New approaches: Neutral Naturalness & Relaxation 

• Can lead to striking new experimental signals 

• May play a role in understanding other empirical mysteries: dark 

matter, neutrino mass, baryogenesis, SUSY breaking, … 

• Future experiments are needed to thoroughly test these theories
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