Effective theories, dark matter and neutrinos

RICHARD HILL

TRIUMF & Perimeter Institute & U. Chicago

Aspen Winter Meeting 15 January 2016

Features work of the following students

M. Solon, (2015 Sakurai thesis award U.Chicago→UC Berkeley/LBNL)

A. Meyer (U.Chicago/FNAL)

Thanks also: J. Arrington, M. Bauer, M. Betancourt, C. Blanco, T. Cohen, R. Gran, A. Kronfeld, G. Lee, G. Paz, M. Wetstein, and many others.

Will discuss 3 "The Effective Theories" of WIMP dark matter

- heavy WIMP expansion
- heavy mediator expansion
- low velocity expansion

and the relation between 3 aspects of Neutrino Physics

- neutrino models
- cross sections (particle physics)
- cross sections (nuclear physics)

cf. talks of S. Pascoli, M. Messier, K Heeger, ... Two questions that I hope this talk will help introduce and address:

- What can the particle theorist do about neutrino cross sections at ~GeV energies?
- Isn't this messy/nuclear physics?

Will see:

- interesting and solvable problems
- new tools, techniques and experimental handles available

Need to go where the physics takes us. Nobody said that probing high scales was going to be easy

Part I: The "The Effective Theories" of WIMP dark matter

- heavy WIMP expansion
- heavy mediator expansion
- low velocity expansion

A lot of space...

2016 Aspen Winter Conference

R. Hill

The "The Effective Theories" of WIMP dark matter

heavy WIMP expansion

- heavy mediator expansion
- low velocity expansion

DM EFT I: Heavy WIMP expansion

- Present null results may point to ≥ TeV
 WIMP mass
- This regime has important challenges and simplifications

Many results independent of WIMP spin, and elementary vs. composite nature of WIMP (e.g. wino, composite scalar, ...)

Direct detection

Many manifestations of heavy particle symmetry:

- hydrogen/deuterium spectroscopy
- $E_n(H) = -\frac{1}{2}m_e(Z\alpha)^2 + \dots \qquad (m_eZ\alpha) \ll m_e$

- heavy meson B/B* transitions

 $F^{B \to D}(v'=v) = 1 + \dots$ $\Lambda_{\text{QCD}} \ll m_{b,c}$

- DM interactions

 $m_W \ll m_\chi$

Benchmarks: large mass, low velocity limit

Suppressed versus dimensional estimate (~10⁻⁴⁵cm²)

- bino/wino, bino/higgsino admixtures Hill, Solon 1309.4092, 1401.3339, 1409.8290 (backup slide)
- bino/sfermion admixtures
- I/M power corrections

Berlin, Robertson, Solon, Zurek 1511.05964

C.-Y. Chen, A. Wijangco ...

Strong motivation for pushing to neutrino floor at TeV mass

Photon line signal for heavy WIMP annihilation:

The "The Effective Theories" of WIMP dark matter

- heavy WIMP expansion
- heavy mediator expansion
 - low velocity expansion

209 2012) 094

2016 Aspen Winter Conference

The "The Effective Theories" of WIMP dark matter

- heavy WIMP expansion
- heavy mediator expansion
- Iow velocity expansion

Velocity expansion

Set-up $\mathcal{L} = N^{\dagger} \left\{ i \partial_t + \frac{\partial^2}{2m_N} + \ldots \right\} N + \chi^{\dagger} \left\{ i \partial_t + \frac{\partial^2}{2m_\chi} + \ldots \right\} \chi$ $+ \sum_i \frac{C_i}{\Lambda^{d-4}} N^{\dagger} (\ldots) N \chi^{\dagger} (\ldots) \chi$ *i* Fitzpatrick, Haxton, Katz, Lubbers, Xu (2012), ...

20 contact operators through 1/M⁴

- tracing simplified models to non.rel. ops Dent, Krauss, Newstead, Sabharwal 1505.03117

- related phenomenology Gluscevic, Gresham, McDermott, Peter 1506.04454

Novel detector responses possible, especially for low-mass WIMPs

QCD aspects of WIMP-nucleus scattering

perturbative QCD corrections:

QCD aspects of WIMP-nucleus scattering

nonperturbative matrix elements: important impact from lattice QCD

Part 2:

The particle physics of neutrino cross sections

<u>DM ↔ neutrinos</u>

- Compelling physics problems
- Particle/nuclear interplay
- Lattice QCD providing critical inputs

Neutrino physics covers a vast range of energy scales

E.g., at DUNE, NOvA, MINOS, T2K, ...

- Probing $\Lambda_{New \ Physics} \sim 10^{15} GeV$
- Neutrino energies ~ GeV
- Neutrino masses ~ 10⁻¹⁰ GeV

Exploiting this window on high scale physics demands a dedicated theory effort

R. Hill

Cross section translates observed event rate to V_e appearance prob.

Cross section translates observed event rate to V_e appearance prob.

Basic signal process: charged current quasi elastic scattering (large event sample, "reconstructible" neutrino energy, theoretically "clean")

Cross section translates observed event rate to V_e appearance prob.

Basic signal process: charged current quasi elastic scattering (large event sample, "reconstructible" neutrino energy, theoretically "clean")

radiative corrections

Cross section translates observed event rate to V_e appearance prob.

Basic signal process: charged current quasi elastic scattering (large event sample, "reconstructible" neutrino energy, theoretically "clean")

hadronic amplitudes

Cross section translates observed event rate to V_e appearance prob.

Basic signal process: charged current quasi elastic scattering (large event sample, "reconstructible" neutrino energy, theoretically "clean")

24

- sterile neutrino searches
- reactor, supernova, astrophysical, solar, cosmological v's
- proton decay, ...

Focus here on \sim GeV v cross sections for oscillation experiments

This is a challenging problem. HEP Theory is...

This is a challenging problem. HEP Theory is...

Begin with elementary targets

Return to the basic process

Large uncertainties in nucleon-level amplitudes, the basic building block for complete nuclear cross sections.

Different nucleon-level cross sections inferred from carbon data

But, different:

- nucleon form factors
- nuclear corrections

Need elementary targets to break degeneracies

HEP toolbox is being applied to precision lepton-nucleon scattering

- Basic problem: don't know form factor shapes, so don't know what we're constraining
- Underlying QCD tells us that Taylor expansion in appropriate variable is rapidly convergent 2

Systematically improvable, quantifiable uncertainties

This approach has been very successful in other processes

E.g., B
$$\rightarrow \pi e v$$
: |z|<0.28 $\frac{d\mathcal{B}}{dq^2} \sim |V_{ub}|^2 |F_+(q^2)|^2$

Becher, RJH hep-ph/0509090

2016 Aspen Winter Conference

This approach has been very successful in other processes

E.g., B
$$\rightarrow \pi e v: |\mathbf{z}| < 0.28$$
 $\frac{d\mathcal{B}}{dq^2} \sim |V_{ub}|^2 |F_+(q^2)|^2$

Adapt these tools for neutrino - hadron scattering

E.g., $v_{\mu} + n \rightarrow \mu^{-} + p$, 0 < Q² < 3 GeV²

|z|<0.35

[Fermilab 15-foot deuterium bubble chamber, PRD 28, 436 (1983)]

Revisit deuterium bubble chamber data

- small(-ish) nuclear effects
- small(-ish) experimental uncertainties
- small statistics, ~3000 events in world data

he In

Realistic error bars for $F_A(q^2)$ from deuterium are significant

Model dependence in deuteron corrections (and possibly issues with experimental systematics)

(Important impacts beyond long baseline v's: $0\nu\beta\beta$, muon capture, ...)

Lattice QCD is poised to compete with deuterium data.

Need lighter quarks, bigger and finer lattices

Big lattices, multiple spacings, physical quark masses

<u>Other targets</u>: neutral currents; resonance couplings and form factors; pion final states

<u>Advantages</u>: independent of detector-dependent radiative corrections and nuclear effects (and for lattice QCD: no underground safety hazard)

Consider related process: elastic electron-proton scattering:

- inputs to neutrino cross sections (vector form factors)
- a proving ground for both theory and experiment

Look at related process: elastic electron-proton scattering:

- inputs to neutrino cross sections (vector form factors)
- a proving ground for both theory and experiment

Look at related process: elastic electron-proton scattering:

- inputs to neutrino cross sections (vector form factors)
- a proving ground for both theory and experiment

Look at related process: elastic electron-proton scattering:

- inputs to neutrino cross sections (vector form factors)
- a proving ground for both theory and experiment

Some facts about the Rydberg constant puzzle (a.k.a. proton radius puzzle)

I) It has generated a lot of attention and controversy

2) The most mundane resolution necessitates:

- 5σ shift in fundamental Rydberg constant
- discarding or revising decades of results in e-p scattering and hydrogen spectroscopy

Some facts about the Rydberg constant puzzle (a.k.a. proton radius puzzle)

I) It has generated a lot of attention and controversy

"The good news is that it's not my problem"

2) The most mundane resolution necessitates:

- 5σ shift in fundamental Rydberg constant
- discarding or revising decades of results in e-p scattering and hydrogen spectroscopy

Some facts about the Rydberg constant puzzle (a.k.a. proton radius puzzle)

I) It has generated a lot of attention and controversy

2) The most mundane resolution necessitates:

- 5σ shift in fundamental Rydberg constant
- discarding or revising decades of results in e-p scattering and hydrogen spectroscopy

This is HEP's problem:

3) Systematic effects in electron-proton scattering impact neutrino-nucleus scattering, at a level large compared to DUNE precision requirements

New analysis: G. Lee, J. Arrington, RJH 1505.01489

- Unexpected Q² dependence of extracted radius, and potentially large.04 radiative corrections

- For both e-p and V-N: large logarithms upset naive perturbation the ony
- Work in progress to implement complete radiative corrections

New analysis: G. Lee, J. Arrington, RJH 1505.01489

- Unexpected Q² dependence of extracted radius, and potentially large.04 radiative corrections

- For both e-p and V-N: large logarithms upset naive perturbation the ony
- Work in progress to implement complete radiative corrections

 0.02^{-1}

New analysis: G. Lee, J. Arrington, RJH 1505.01489

- Unexpected Q² dependence of extracted radius, and potentially large.04 radiative corrections

- For both e-p and V-N: large logarithms upset naive perturbation the ony
- Work in progress to implement complete radiative corrections

A systematic framework is being constructed to map elementary-target/ lattice data through to oscillation observables

Much to do, and much to learn!

Cross sections key to discoveries in the neutrino sector

Particle theory has a critical role to play

- precision hadron physics: building on CKM studies
- <u>radiative corrections</u>: renormalization, soft-collinear effective theory
- lattice QCD

Important connections: other intensity frontier initiatives

- lattice QCD & baryons: neutrinos, DM, proton radius puzzle, nEDM, ...
- <u>radiative corrections</u>: neutrinos, g-2, proton radius puzzle, CKM, ...
- <u>nuclear effects and hadronic final state</u>: energy reconstruction in V-N scattering; atmospheric bkgd. to proton decay, ...

backup

1

 10^{-4}

 10^{-4}

 10^{-4}

 10^{-4}

 10^{-4}

 10^{-5}

interplay of mass-suppressed (tree level) and loop suppressed contributions

Additional states in the dark sector

experimental landscape: electron-proton scattering G. Lee, J. Arrington, RJH, 2015

Sample application of elementary target data: constrain and validate nuclear models Can we constrain a simple nuclear model for two-body contributions ? $\sigma = \sigma_{1-\text{body}} + f \sigma_{2-\text{body}}$ (GENIE MEC model) Minerva 20×10⁻³⁹ d $_{
m O}/{
m dQ}^2_{
m QE}$ (cm²/GeV²/neutron) 18 $F_A = dipole model$ [$m_A = 1.01(2)$] NuWro RFG M₄=1.35 NuWro RFG M₁=0.99 + TEM NuWro RFG M₄=0.99 GENIE RFG M_A=0.99 NuWro SF M₄=0.99 0.5 1.5 Q_{OF}^2 (GeV²) -0.50.5<u>×1</u>0⁻³⁹ Minerva d $_{
m O}/{
m dQ}^2_{
m QE}$ (cm²/GeV²/neutron) 18 $F_A = model$ -NuWro RFG M₄=0.99 + TEM NuWro RFG M₄=0.99 independent GENIE RFG M_A=0.99 ╋ NuWro SF M_A=0.99 0.5 1.5 large nucleon-level uncertainties Q_{QE}^{2} (GeV²) T 0.8 0.6 51 2016 Aspen Winter Conference 10^{-1} 10^{-2}

