Reactor Neutrino Experiments

Karsten M. Heeger Yale University

ACP, January 14, 2015

Reactor Antineutrinos

A Tool for Discovery

2012 - Measurement of θ_{13} with Reactor Neutrinos

EH3

Weighted Baseline [km]

rompt Reconstructed Energy [MeV

0.8

2003 - First observation of reactor EH1 EH2 KamLAND 0.95 antineutrino disappearance 0.4 0.6 0.8 1.2 1.4 1.6 1.8 0 02 1 Va €00000 ₩ 50000 \$ 40000 A 30000 20000 10000 0.95 0.5 0.85 6 8 10 1 Prompt Reconstructed Energy [MeV] Data - BG - Geo v̄. Expectation based on osci, parameters determined by KamLAND Survival Probability --- EH1 0 - EH2 - EH3 Bost fit 0 0.2 0.4 0.6 L_{eff} / E_v [km/MeV] 20 30 40 50 60 70 80 90 100 L.E. (km/MeV) a story of varying baselines...²

1995 - Nobel Prize to Fred **Reines at UC Irvine**

1956 - First observation of (anti)neutrinos

Reactor Antineutrinos

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

Reactor Antineutrinos

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

Prompt + Delayed Coincidence

$$\overline{v_e} + p \rightarrow e^+ + n$$

prompt event:

positron deposits energy and annihilates (~ns)

delayed event:

neutron thermalizes and captures on Gd

Uncertainty in relative E_d efficiency (0.12%) between detectors is largest systematic.

Karsten Heeger, Yale University

Oscillation Measurements

Neutrino Mixing

Mixing Angles

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \quad U_{\text{MNSP}} \text{ Matrix} \\ \text{Maki, Nakagawa, Sakata, Pontecorvo}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}} \sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \sin^{2}\theta_{12} & \sin^{2}\theta_{13} \\ 0.50^{+0.07}_{-0.06} \\ 0.50^{+0.07}_{-0.06} \\ \text{maximal?} & \text{large, but not maximal!} \end{pmatrix}$$

Karsten Heeger, Yale University

Reactor Neutrino Oscillations

for 3 active v, two different oscillation length scales: $\Delta m_{12}^2 \Delta m_{23}^2$

oscillation frequency L/E $\rightarrow\Delta m^2$

Reactor Neutrino Oscillations

Absolute Reactor Flux Largest uncertainty in previous measurements

Relative Measurement Removes absolute uncertainties!

relative measurement (largely) cancels reactor systematics

Daya Bay Reactor Experiment

mineral oil Gd-doped liquid scintillator liquid scintillator y-catcher

Antineutrino Detector

6 detectors, Dec 2011- Jul 2012 217 days

now running with 8 detectors

target mass: 20 ton per AD photosensors: 192 8"-PMTs energy resolution: $(7.5 / \sqrt{E} + 0.9)\%$

rsity

Daya Bay Antineutrino Rate vs Time

Over 1 Million Antineutrino Interactions Detected

Observation of \overline{v}_e Disappearance

Based on 55 days of data with 6 ADs, discovered disappearance of reactor \overline{v}_{e} at short baseline. [PRL **108**, 171803]

Obtained the most precise value of θ_{13} : sin²2 θ_{13} = 0.089 ± 0.010 ± 0.005 [CPC **37**, 011001]

One of Science's breakthroughs of year 2012

Karsten Heeger, Yale University

ACP, January 14, 2015

 $\chi^2/NDF = 134.7/146$

most precise measurement of $sin^2 2\theta_{13}$ (6%), and Δm^2_{ee} in the electron neutrino disappearance channel (4%)

Phys.Rev.Lett. 115 (2015) 11, 111802

Daya Bay Neutrino Oscillation

Neutrino oscillation is energy and baseline dependent

Daya Bay demonstrates L/E oscillation

Phys.Rev.Lett. 115 (2015) 11, 111802

Daya Bay Precision Measurement of θ_{13}

Karsten Heeger, Yale University

Daya Bay

Daya Bay Sensitivity Projections

Precision Measurements in $sin^22\theta_{13}$ and Δm^2_{ee}

Daya Bay remains statistically limited through 2015. Will also improve systematics.

Major systematics:

 θ_{13} : Relative + absolute energy, and relative efficiencies

 $|\Delta m^2_{ee}|$: Relative energy model, relative efficiencies, and backgrounds

Aim to improve precision of $sin^22\theta_{13}$ and Δm^2_{ee} to 3% by 2017.

v Anomalies Beyond 3 Neutrinos?

Neutrino Anomalies - More than 3 v?

 $\Delta m^2 \sim O(1eV^2)$ and $sin^2 2\theta > 10^{-3}$ "sterile" neutrino states

Karsten Heeger, Yale University

 10^{-1}

 10^{-3}

95% CL

 10^{-2}

 $|U_{e4}|^2$

 10^{-1}

Implications for Future Neutrino Program

Discovery of eV-scale sterile neutrinos would be a paradigm change for particle physics.

- Expected neutrino spectrum and sensitivity to CP violation for longbaseline neutrino program
- Effective neutrino mass measured by 0νββ

DUNE

3 4 5

2

300

250

200

150

100

50

events / 0.25 GeV

neutrino events, NH

 $(\theta_{14}, \theta_{24})$: (20°, 10°)

 $(15^{\circ}, 10^{\circ})$ (5°, 5°)

3+0

7

8

Karsten Heeger, Yale University

anti-neutrino events, NH

70

60

50

40

30

20

2 3 4 5 6

events / 0.25 GeV

Search for Sterile Neutrinos at Daya Bay

Phys. Rev. Lett. 113, 141802 (2014)

sterile neutrinos would appear as additional spectral distortion and overall rate deficit

Daya Bay probes largely unexplored region at $\Delta m_{41}^2 < 0.1 \text{ eV}^2$

Reactor Flux and Spectrum "Anomalies"

Flux Deficit

Spectral Deviation

20000

15000

10000

5000

0

Consistent with previous experiments

Extra neutrino oscillations or artifact of flux predictions?

Understanding reactor flux and spectrum anomalies requires reactor measurements

New feature in 4-6 MeV region of spectrum.

- Data

Full uncertainty Reactor uncertainty

Integrated

-ILL+Vogel

arXiv:1508.04233, accepted by PRL Daya Bay collaboration

Reactor Spectrum Anomaly

Spectral deviation

- 10% excess in 4-6 MeV region when compared to model calculations

Observed in all 3 θ_{13} experiments

RENO

Daya Bay

Double Chooz

Karsten Heeger, Yale University

Modeling the Reactor Spectrum

Challenges

Reactor neutrino spectrum is an admixture of thousands beta branches from fission products of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu

Conversion method: Cumulative neutrino spectrum from measured beta spectrum

Summation method: Combine fission yields with decay data in databases

- discrepancies between databases
- decay schemes

Short-Baseline Reactor Neutrino Experiments

Search for sterile neutrinos through neutrino oscillations

Test reactor anomaly

Test allowed oscillation parameter space

Measurement of the Relative Reactor Flux and Spectrum at Different Baselines independent of reactor models/predictions

Segmented detector

Relative measurement within detector

each segmented measures L/E

Short-Baseline Reactor Experiments Worldwide

STEREO: Gd-LS detector at 10m from ILL , France Neutrino-4: Gd-LS detector at 6-12m from SM-3, Russia NEOS: Gd-LS detector at ~30m from Hanbit, Korea NuLAT: Boronloaded plastic scintillator cubes

SoLid/CHANDLER: segmented composite scintillator cubes at 5.5m from BR2, Belgium

DANSS: Segmented plastic scintillator at ~10m from KNPP, Russia

PROSPECT: Segmented 6Li liquid scintillator at 7-12m from HFIR, US

Precision Oscillation and Spectrum Experiment PR SPECT

Search for short-baseline oscillation at distances <10m Precision measurement of 235 U reactor ∇_e spectrum

2 detectors, movable baseline, research reactor

Phase I

one movable detector AD-I, ~7-12 m baseline

Phase II

two detectors, <u>movable</u> AD-I, ~7-12m baseline stationary AD-II, ~15-19m baseline power: 85 MW (research) fuel: highly enriched uranium (²³⁵U) core shape: cylindrical, compact duty-cycle: 41%

physics program, arXiv: 1512.02202 test detector studies, JINST 10 P11004 (2015) background measurements, NIM A806 (2016) 401 whitepaper, arXiv: 1309.7647

prospect.yale.edu

High Flux Isotope Reactor, Oak Ridge National Lab

US Research Reactor

Research Reactor Spectrum

HEU core provides static spectrum of mainly ²³⁵U.

power: 85 MW (research) fuel: highly enriched uranium (²³⁵U) core shape: cylindrical size: h=0.5m r=0.2m (compact) duty-cycle: 41%

Nucl. Instrum. Meth. A806 (2016) 401–419, arXiv:1506.03547, PROSPECT collaboration

Compact reactor core

Compact core (< 1m) avoids oscillation washout

Karsten Heeger, Yale University

PROSPECT Phase I Detector System

Antineutrino Detector

- 3000L of ⁶Li liquid scintillator
- 120 scintillator loaded cells, ~15x15x120cm
- double ended PMT readout, light guides, $<4-5\%/\sqrt{E}$ resolutions
- thin optical separators, minimal dead material
- containment vessel, filled in place

PROSPECT Physics

A Precision Oscillation Experiment

4σ test of best fit after 1 year >3σ test of favored region after 3 years 5σ test of allowed region after 3+3 years

A Precision Spectrum Experiment

Measurement of ²³⁵U spectrum Compare different reactor models Opportunity to compare different reactor cores

Karsten Heeger, Yale

PROSPECT Detector and Shielding Development

PROSPECT-0.1 Characterize LS Aug 2014-Spring 2015

PROSPECT-2 Background studies Dec 2014 - Aug 2015

1m length

LS, ⁶LiLS

23 liters

1x2 segments

1.2m length

50 liters

⁶l il S

PROSPECT-20 Segment characterization Scintillator studies Background studies Spring/Summer 2015

PROSPECT-50 Baseline design prototype Winter 2015

Fiducialization and background studies Mid 2016

PROSPECT AD-I

Physics measurement *Technically ready Late 2016 to proceed directly available funding

to AD-1 with

10x12 segments 1.2m length ~3 tons ⁶LiLS

4x4 segments

1.2m length

400 liters

⁶LiLS

multi-layer shielding

local reactor shielding

Mass Hierarchy?

Mass Hierarchy and Reactor Neutrinos

Mass Hierarchy and Reactor Neutrinos

Mass Hierarchy and Reactor Neutrinos

Proposed Projects: JUNO and RENO-50

Precision 3-v Oscillation Physics

	Current	JUNO
Δm_{12}^2	3%	0.6%
Δm_{23}^2	5%	0.6%
sin²θ ₁₂	6%	0.7%
sin²θ ₂₃	20%	N/A
sin²θ ₁₃	10%	15%
	(~4% in 3 yrs)	

Mass Hierarchy Sensitivity

Karsten Heeger, Yale University

Reactor Antineutrinos in History

A Tool for Discovery

2012 - Measurement of θ_{13} with Reactor Neutrinos

KamLAND

Daya Bay, Double Chooz, RENO

a story of varying baselines...³⁶

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1956 - First observation of (anti)neutrinos

Current reactor experiments (L~1-2km) provide precision data on θ_{13} , and reactor antineutrino flux and spectra, and complementary limits on sterile neutrinos. Flux measurement is consistent with previous short-baseline measurements (~6% deficit). Positron spectrum appears inconsistent with current predictions in 4-6 MeV region.

Short-baseline (L~10m) experiments (e.g. PROSPECT) offer opportunities for precision studies of reactor spectrum and a definitive search for short-baseline oscillation and sterile neutrinos.

Reactor experiments may inform nuclear modeling of reactors. Detectors may find applications in reactor monitoring.

Medium-baseline experiments (L~60km) (e.g JUNO, RENO-50) are technically demanding but may offer <1% precision oscillation physics and a window to the mass hierarchy.

After 60 years of reactor neutrino experiments, future is bright. Active field with ongoing and planned experiments.