

Mayda Velasco

Northwestern University Aspen 2016

Top quark reaching drinking age Many properties well measured...

- **CDF: PRL74 2626-2631 (1995)**
- D0: PRL74 2632-2637 (1995)
- It completes the SM 3 family structure
 - top is the weak-isospin partner of the b-quark
 - **spin** = $\frac{1}{2}$ & charge = + $\frac{2}{3}|e|$
- Top quark is the heaviest known fundamental particle
 - $m_t = 173.34 \pm 0.76 \text{ GeV} [World comb.(2014), arXiv:1403.4427]$
 - m_t = 172.99 ± 0.91 GeV [ATLAS Combination (March 2015)]
 - m_t = 172.44 ± 0.48 GeV [CMS Combination (Sept. 2015)]
- Top decays (almost exclusively) through $t \rightarrow bW$, BR($t \rightarrow bW$) ~100% ■ BR($t \rightarrow sW$) ≤ 0.18%, BR($t \rightarrow dW$) ≤ 0.02%
- $\Box_{t}^{SM} = 1.42 \text{ GeV}$
 - $\tau_{t} = (3.29^{+0.90}_{-0.63}) \times 10^{-25} \text{ s}^{*} << \Lambda_{QCD}^{-1} \sim 10^{-23} \text{ s}$ (hadronization time)
 - Top quark decays before hadronization takes place

*[D0, PRD 85 091104, 2012] More precise # from LHC available

+ Top properties makes it a great probe

- Precision test of both QCD and EWK
 - Strong coupling to Higgs
- Sensitive to Physics Beyond the SM
- Can be used to measure important parameters like α_s, m_t etc.
- Mayor background to important searches
- Interesting playground to develop new analysis techniques

+ Too much progress in the past six month... I will run out of time

- Underlying event
- tt Cross section measurements
 - Inclusive
 - \checkmark tt and tt/Z
 - Differential
 - ✓ Resolved
 - ✓ Boosted
 - Associate production with bosons ttV (V = γ, Z, W, H)
 - tt plus jets

- Single top cross section
 V_{tb}
- Top quark beyond the SM
 - FCNC processes (tqX, X= γ, Z, g, H)
 - Charge asymmetry
 - anomalous couplings
 - Probing the top quark spin
- Top quark mass

+ Top quark production: Tevatron versus the LHC top factory

- At the LHC
 - l ttbar event per sec
 - top quarks are mainly produce in ttbar pairs
 - At a lower rate: single top quark

 \rightarrow Strong interaction

 \rightarrow EWK interaction

+ tt: Basic Top – AntiTop topology

(not inc. τ)	BR	background
dilepton	~5%	low
lepton + jets	~30%	moderate
all hadronic	~44%	high

+ 13 TeV Underlying events tuning checked with tt events in μ+jets

→ Scale at generator " Q^2 " set to m_T of top quark in tt rest frame

+ Purest tt samples: µe channel s ⁴⁵⁰ 400 **ATLAS** Preliminary • Data 2015 $\sqrt{s} = 13 \text{ TeV}, 78 \text{ pb}^{-1}$ □ tī Powheq+PY Best sample for 1st measurements 350 🔲 Wt Z+jets 300 Diboson of inclusive top pair X-sections Mis-ID lepton 250 200 150 100 $\frac{N_{\rm data} - N_{\rm bkg}}{\varepsilon A \mathcal{L}}$ 50 $\sigma_{t\bar{t}} =$ n 2 ≥ 3 0 1 N_{b-tag} 42 pb⁻¹ (13 TeV) Number of events 19.7 fb⁻¹ (8 TeV) CMS Data $e^{\pm}\mu^{\mp} + \ge 2$ jets CMS tŦ Observed ±10_{+h} Preliminary Expected 40 Non W/Z Expected ±10_{exp} VV Expected ±20_{exp} tW $Z/\gamma^* \rightarrow e^{\pm}\mu^{\mp}$ 20 95% Data/MC 0.5 $\widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0$, $m(\widetilde{\chi}_1^0)=1$ GeV 0^H 150 $m_{\tilde{t}}^{190}$ (GeV) 160 170 180 ^{0.3}∟ 0 100 150 200 250 50 300

m_{eu} (GeV)

+ Purest tt samples: μe channel

Best sample for 1st measurements of inclusive top pair X-sections

$$\sigma_{t\bar{t}} = \frac{N_{\text{data}} - N_{\text{bkg}}}{\varepsilon A \mathcal{L}}$$

+ Inclusive top pair cross sections

+ tt production in the forward region

Fiducial:

$\sigma(top)[7 {\rm TeV}]$	=	$239 \pm 53 (\mathrm{stat}) \pm 33 (\mathrm{syst}) \pm 24 (\mathrm{theory}) \mathrm{fb}$
$\sigma(top)[8 \text{ TeV}]$	=	$289 \pm 43 (\mathrm{stat}) \pm 40 (\mathrm{syst}) \pm 29 (\mathrm{theory}) \mathrm{fb}$

 $\sigma_{\text{NLO(MCFM)}}$ [7 TeV] = 180_{-41}^{+51} fb $\sigma_{\text{NLO(MCFM)}}$ [8 TeV] = 312_{-68}^{+83} fb Motivation for studies in forward region:

- test for the differential predictions
- reduced gg production

 \checkmark more sensitive to tt charge asy.

 probes poorly constrained high-x gluon PDF

+ Top pair differential cross sections

CHALLENGE: Reconstruct, identify & correctly assign decay products to original top quarks

- Resolved regime:
 - well separated jets
 - isolated leptons
- Boosted regime:
 - overlapping decay
 - Non-isolated leptons

Many BSM searches with boosted tops:

 tt / tb / tH resonances, stop quarks, vector-like quarks, ...

+ Resolved: differential distribution @ 8 TeV

- e/μ +jets and dilepton for ATLAS and CMS find $p_T(t)$ and rapidity softer than predicted by PYTHIA-6
- Better agreement now found in new comparison with other generators

ATLAS: arXiv:1511.04716

CMS:

CMS-PAS-TOP-15-011

Resolved data and theory comparison revised @ 8 TeV

→ Improvements with Pythia-8 are also observed at 8 TeV (not shown)

CMS PAS-TOP-15-005

CMIS-PAS-TOP-15-013

42 pb⁻¹ (13 TeV)

⁴⁰⁰ 500 p_(t_b) [GeV]

I+jets 🔶 data tī signal

300

200

100

tt background

Single top

V+Jets QCD

Parton σ (p_Tt > 400 GeV) = 1.44 ± 0.10 (stat.+syst.) ± 0.13 (PDF) ± 0.15 (Q²) ± 0.04 (lumi.) pb

Particle σ (p_Tt > 400 GeV) = 1.28 ± 0.09 (stat.+syst.) ± 0.10 (PDF) ± 0.09 (Q²) ± 0.03 (lumi.) pb

+ Boosted: 1st Charge asymmetry in boosted top-quark pair production

LO symmetric, $A \neq 0$ due to interference

+ ttW, ttZ cross sections @ 8 TeV

Measured cross sections:

$$\sigma_{t\bar{t}W} = 369^{+86}_{-79} \text{ (stat)} \pm 44 \text{ (syst) fb}$$

 $\sigma_{t\bar{t}Z} = 176^{+52}_{-48} \text{ (stat)} \pm 24 \text{ (syst) fb}$

The observed (expected) significance of:

- ttW is 5.0σ (3.2σ) - ttZ is 4.2σ (4.5σ)

600

ATLAS-CONF-2015-032

CMS-PAS-TOP-14-021

+ 8 TeV: Cross section for tt + heavy quarks

arXiv:1508.06868

CMS-PAS-TOP-13-016

	$\sigma({ m t\bar{t}b\bar{b}})$	$\sigma({ m tar t}{ m jj})$	$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$
hardB:			
this analysis	$271\mathrm{fb}\pm40\%$	$23.1\mathrm{pb}\pm16\%$	$0.012\pm34\%$
theory NLO ^{$(arXiv:1403.2046)$}	$229\mathrm{fb}^{+18\%}_{-24\%}$	$21.0 \mathrm{pb} {}^{+15\%}_{-13\%}$	$0.011^{+39\%}_{-13\%}$
MadGraph+pythia	$174\mathrm{fb}\pm28\%$	$24.3\mathrm{pb}\pm20\%$	$0.007 \pm 10\%$
hadronB:			
this analysis	$348\mathrm{fb}\pm 38\%$	$23.1\mathrm{pb}\pm16\%$	$0.015\pm32\%$
CMS dilepton ^(arXiv:1411.5621)	$360\mathrm{fb}\pm36\%$	$16.1\mathrm{pb}\pm14\%$	$0.022\pm29\%$
MadGraph+pythia	$216\mathrm{fb}\pm35\%$	$24.3\mathrm{pb}\pm20\%$	$0.009 \pm 14\%$

channel and category

+ 13 TeV: tt + jet differential (eµ+2b)

Also see

Single top s-channel first evidence @ the LHC

 Signal extraction based on a Matrix Element Method

 σ_s =4.8

±1.1(stat.)

+2.2-2.0(syst.)pb

ATLAS-CONF-2015-047

+ Extracting |V_{tb}|

Direct determination of the matrix element $|V_{tb}|$:

- Test the unitary of the CKM Matrix
- Sensitivity to new physics

 $\begin{array}{l} \mbox{Measure } |V_{tb}| \mbox{ assuming left-handed SM-like} \\ \mbox{W-t-b coupling} & (\mbox{and } |V_{tb}| >> |V_{ts}|, \, |V_{td}|) : \end{array}$

$$|V_{\rm tb} \cdot f_{\rm LV}| = \sqrt{\frac{\sigma_{\rm obs}}{\sigma_{\rm theory}}}$$

with $f_{\rm LV} = 1$ in the SM.

ATLAS+CMS Preliminary	LHC <i>top</i> wg	Nov 20 2015
$ I_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top quark	k production	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2010) PRD81 (2010) 054028) 054018,	total theo
$\Delta \sigma_{\text{theo}}$: scale \oplus PDF		lotar theo
$m_{top} = 1/2.5 \text{ GeV}$		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$
t-channel:		
ATLAS 7 TeV ¹	┝─┼═┼─┥	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV	⊢; ∎;1	$0.97 \pm 0.09 \pm 0.02$
ATLAS-CONF-2014-007 (20.3 fb ⁻¹) CMS 7 TeV	<u>⊧-</u> ,	1.020 ± 0.046 ± 0.017
JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)		0.070 + 0.045 + 0.016
JHEP 06 (2014) 090 (19.7 fb ⁻¹)		$0.979 \pm 0.043 \pm 0.010$
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊢ ; ⊕ ; −</mark> 1	0.998 ± 0.038 ± 0.016
CMS 13 TeV	 	1.12 ± 0.24 ± 0.02
CMS-FAS-TOF-15-004 (42 pb)		
		t oo ±0.15 o oo
PLB 716 (2012) 142-159 (2.05 fb ⁻¹)		$1.03 - 0.18 \pm 0.03$
CMS 7 TeV	⊢ + ● + − − − 1	$1.01^{+0.16}_{-0.13}$ + 0.03 - 0.04
ATLAS 8 TeV (*)		1.10 ± 0.12 ± 0.03
ATLAS-CONF-2013-100 (20.3 fb ⁻¹)		1 03 + 0 12 + 0 04
PRL 112 (2014) 231802 (12.2 fb ⁻¹)		1.00 ± 0.12 ± 0.04
	<mark>⊢ ┼ ▼ ┼ ─</mark> ┨	$1.06 \pm 0.11 \pm 0.03$
CMS-PAS-TOP-14-009		
s-channel:		
ATLAS 8 TeV ²		$0.93 + 0.18 - 0.20 \pm 0.04$
Wt:		
ATLAS 8 TeV ^{1,2}	⊢ _+∎+4	$1.01 \pm 0.10 \pm 0.03$
arXiv:1510.03752 (20.3 fb ⁻¹)	w the line	¹ including top-quark mass uncertainty
0.4 0.6 0.8	3 1 1.2	2 1.4 1.6 1.8
	lf _{LV} V _{tb} l	

+ Flavor Changing Neutral Currents

<u>Search</u> <u>channel</u>

Theoretical predictions for the BR of FCNC top quark decays

					-	-	-
Process	SM	QS	2HDM	FC 2HDM	MSSM	🕅 SUSY	RS
$t \rightarrow uZ$	8×10^{-17}	1.1×10^{-4}	_	_	$2 imes 10^{-6}$	$3 imes 10^{-5}$	_
$t ightarrow u\gamma$	$3.7 imes 10^{-16}$	$7.5 imes10^{-9}$	—	—	$2 imes 10^{-6}$	$1 imes 10^{-6}$	
t ightarrow ug	$3.7 imes 10^{-14}$	$1.5 imes 10^{-7}$	—	—	$8 imes 10^{-5}$	$2 imes 10^{-4}$	
$t \rightarrow uH$	2×10^{-17}	$4.1 imes10^{-5}$	$5.5 imes10^{-6}$	—	10 ⁻⁵	\sim 10 $^{-6}$	—
$t \rightarrow cZ$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 imes 10^{-6}$	$3 imes 10^{-5}$	$\le 10^{-5}$
$t ightarrow c \gamma$	$4.6 imes 10^{-14}$	$7.5 imes10^{-9}$	~ 10-6	\sim 10 $^{-9}$	$2 imes 10^{-6}$	$1 imes 10^{-6}$	\leq 10 $^{-9}$
t ightarrow cg	$4.6 imes 10^{-12}$	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	$8 imes 10^{-5}$	$2 imes 10^{-4}$	$\le 10^{-10}$
$t \rightarrow cH$	$3 imes 10^{-15}$	4.1×10^{-5}	1.5×10^{-3}	\sim 10 $^{-5}$	10 ⁻⁵	$\sim 10^{-6}$	$\leq 10^{-4}$

+ FCNC tqH < 0.4% @ 95% CL: $H \rightarrow$ multi-leptons, $\gamma\gamma$, bb 19.7 fb⁻¹ (8TeV) 12 CMS Events / 4 GeV hadronic channel

ATLAS: JHEP 12 (2015)

Data

Signal + total background fit

10ŀ

8

6

M	S: PAS-TOP-2014-020	$-\sigma$	$\mathcal{B}_{exp}(t \rightarrow Hc)$	$+\sigma$	$\mathcal{B}_{obs}(t \rightarrow Hc)$
	Trilepton	0.95	1.33	1.87	1.26
	Same-sign dilepton	0.68	0.93	1.26	0.99
	Multilepton combined	0.65	0.89	1.22	0.93
	Diphoton combined	0.44	0.67	1.06	0.47
	b-jet plus lepton	0.60	0.89	1.37	1.16
	Final combination	0.30	0.43	0.64	0.40
		$-\sigma$	$\mathcal{B}_{exp}(t \rightarrow Hu)$	$+\sigma$	$\mathcal{B}_{obs}(t \rightarrow Hu)$
	Trilepton	1.05	1.47	2.09	1.34
	Same-sign dilepton	0.62	0.85	1.16	0.93
	Multilepton combined	0.60	0.82	1.14	0.86
	Diphoton combined	0.39	0.60	0.96	0.42
	b-jet plus lepton	0.57	0.84	1.31	1.92
	Final combination	0.27	0.40	0.58	0.55

Probing top quark spin Correlations & PBSM

Top quarks are produced unpolarised **BUT** their spins are correlated in the SM

arXiv:1511.06170

- Differences from PBSM predictions
 - New: CMS 8 TeV
 - Chromo-magnetic anomalous couplings
 - Older: ATLAS

Stop

Exclude top squark between m_t and 191 GeV at 95% CL

0.5 $1/\sigma d\sigma/d \Delta \phi_{l^+l^-}$ NLO+EW, SM • Data CMS NLO+EW, -- MC@NLO no spin corr. 0.45 **CMS-TOP-14-023** 0.4 0.35 0.3 0.25 Data/Simulation .05 .95 0 π/6 π/3 π/2 $2\pi/3$ 5π/6 ĪΔφ, 19.5 fb⁻¹ (8 TeV) $1/\sigma d\sigma/d \Delta \phi_{l^+l^-}$ CMS 0.35 0.3 Data Fit NLO+EW ($\mu_{p} = \mu_{r} = m_{t}$) 0.25 NLO+EW ($\mu_{\rm D} = \mu_{\rm L} = 2 m_{\rm t}$) NLO+EW (μ_=μ_=m_t/2) π/3 π/2 2π/3 0 π/6 5π/6 $|\Delta \phi_{l+l-}|$

Precision in Top Mass: Beyond expectation...

 m_t

 $173.6 \pm {}^{1.7}_{1.8} \text{ GeV}$

 $173.9 \pm 1.8_{1.9}^{1.8} \text{ GeV}$

 $174.1 \pm ^{2.1}_{2.2}$ GeV

NNPDF30

CT14

MMHT2014

___ L_{×y}

3000 fb⁻

14 TeV

Conclusions

- The LHC continues to be a powerful tool for top physics
 - Unprecedented precision in Run-1
 - First Run-2 tt and single top t-channel analyses already available
- Signatures with top could be key to future discoveries
 - Required understanding and tools for Run-2 are advanced

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP