Recent heavy ion results from the LHC

Brian. A Cole Columbia University

Aspen Winter Conference on Particle Physics

Introduction

(generously) The Heavy Ion concordance model

- •We want to study
 using probes of different wavelength -- since QGP properties may (should) evolve
 - Long study collective dynamics
 ⇒which we know from past data to be strongly coupled
 ⇒how strongly, and why?
 - Short study using high-energy quarks and gluons
 ⇒and their energy loss (quenching) in plasma

Introduction

(generously) The Heavy Ion concordance model

We want to study /using probes of different wavelength -- since QGP properties may (should) evolve
Long - study collective dynamics
Short - study using high-energy quarks and gluons
For brevity: in this talk, focus on these two topics
Necessarily skipping many interesting results ...

Soft probes

Elliptic flow

• Old news:

- See cos(2φ) modulation of produced particle angular distributions
- ⇒Attributed to collective expansion in collisions with non-zero impact parameter
- Naturally appears in hydrodynamics
- \Rightarrow many, many subtleties

5

Higher Flow Harmonics

Major paradigm shift in the field in last 5 years

 Higher flow harmonics arising from initial-state fluctuations (~ which nucleons scatter)

$$rac{dN}{d\phi dp_T d\eta} = rac{dN}{2\pi dp_T d\eta} \left(1 + \sum_{m{n}} 2m{v_n} \cos\left[n(\phi - \psi_{m{n}})
ight]
ight)$$

Frequently measured using two-particle angular correlations

"Triangular flow"

Summary of LHC + PHENIX@RHIC results on measurements of v₃:

 $\Rightarrow Good agreement. Even with RHIC data?!$ $\Rightarrow Note characteristic p_T dependence$

Event-by-event vn measurements

 Unique to LHC: large acceptance detectors allow event-by-event vn measurements

Distributions of v₂, v₃, v₄ unfolded for experimental resolution

Event-by-event vn correlations

• Event-by-event vn method allows direct study of correlations between different harmonics:

e.g. v₃-v₂ for a subset of available centrality intervals

Compared to 2 models

 Such measurements provide a detailed test of models of initial-state fluctuations
 ⇒Also show coupling between harmonics due to non-linear "hydrodynamic" expansion

Azimuthal harmonics in p+Pb

Surprising development in last 3 years: Observation of flow-like harmonics in p+Pb ⇒ similar to that observed in Pb+Pb

2-particle correlation before (left), after (right) subtracting lowmultiplicity yield

p+Pb vn values versus pT (left) and multiplicity (right) for v3 with Pb+Pb comparison

p+Pb forward ridge from LHCb

Two-particle correlations in forward η

- clear ridge signal in both proton-going (2<η<4.9) and lead-going (-4.9<η<-2) side.
- the amplitude is comparable
 - \Rightarrow CMS/ALICE see FB difference up to 10-20%

Azimuthal harmonics in p+Pb

- Multi-particle (4, 6, 8) correlations an important test of whether azimuthal harmonics are "global" features

 as opposed to (e.g.) pQCD-induced correlations
 - -studied using cumulants (details skipped for brevity)
 - ⇒ Agreement between 4, 6, 8-particle v₂ values suggests correlation is global in Pb+Pb and p+Pb

Ridge in 13 TeV p-p collisions

Usual 2-particle correlation analysis:

Ridge in 13 TeV p-p collisions

- Similar results obtained (submitted to PRL) by CMS using similar methods:
 - consistent results
 - ⇒same ridge yields at 7 and 13 TeV for the same event multiplicity

"Flow" in p-p collisions?

Critical question:

– does the p-p ridge result from $cos(n\Delta\phi)$ modulation?

- how to better handle the hard contribution?
 - ⇒New method from ATLAS: use template fit consisting of low-multiplicity $Y(\Delta \phi) + \cos(2\Delta \phi)$ term (to start).

⇒template method works well, describes both the ridge and modifications to the dijet peak
⇒extract the v₂ (relative amplitude of cos(2∆φ) term)

13 and 2.76 TeV p-p v2 values

Surprises:

- Observe that v₂
 is approximately
 constant versus
 multiplicity
- ⇒Growth in ridge yield with N_{trk} ~ trivial
- v₂ approximately the same at 2.76 and 13 TeV
- Similar dependence on p_T as in p+Pb
- ⇒Direct comparison awaits p+Pb analysis using same template method.

Hard probes

Pb+Pb photon yields

Ratios of isolated, direct photon yields/T_{AA} to NLO pQCD calculation for p-p (JETPHOX1.3)

Also shown, JETPHOX for Pb+Pb: iso only, EPS09 NPDF
 ⇒Hard scattering rates under control
 ⇒Not vet sensitive to nuclear PDF effects in Pb+Pb

Pb+Pb Z production

• Z RAA consistent with unity

- Similar observation from ATLAS
- Same conclusion by ATLAS and CMS for W⁺⁻
 - ⇒ Hard scattering rates in Pb+Pb collisions "understood"
 - \Rightarrow Nuclear PDF effects will eventually (soon?) be important.

Pb+Pb Charged Particle Production

 Charged particle spectra show a p_T-dependent suppression associated with jet quenching

 modified at p_T ≤ 4 GeV by radial expansion of the plasma
 ⇒theoretical analyses of jet quenching have, until recently, focused primarily on charged particle measurements
 ⇒But charged particles are insensitive to details ⇒ jets

Jet spectra: p+p and Pb+Pb

Absolutely normalized R = 0.4 anti-kt jet spectra:

- 2013 2.76 TeV p+p (left)
 - \Rightarrow cross-section
- 2011 Pb+Pb (right)
 ⇒per-event yields

Pb+Pb Jet production

RAA vs pT and y

 – in sub-set of centrality bins
 ⇒Fully unfolded

• Observe

Jet yield suppressed
 by ~ x2 in central
 Pb+Pb collisions

- \Rightarrow up to jet p_T of 400 GeV
- Slow increase with increasing jet p_T
- No apparent rapidity dependence

⇒Non-trivial, as suppression depends on steepness of the jet spectrum, quark/gluon fraction -- both of which change vs rapidity

Pb+Pb fragmentation functions

 Measure differential, per-jet yield of charged particles within R = 0.4 of p_T > 100 GeV jets

– evaluate ratios to peripheral (cancel some systematics)
 ⇒Complicated pattern of modification at low, high, and intermediate z.

Pb+Pb Jet shape

Results shown for leading R = 0.3 jets with 120 < p_T < 300 GeV in dijet pairs

Direct measurement of fragment angular distribution

$$ho(r) \equiv rac{1}{N_{jet}}\sum\limits_{jets} \left(rac{\sum\limits_{r_{trk}\in\Delta r}p_T^t}{\Delta r \ p_T^{jet}}
ight)$$

Pb+Pb/pp ratio shows excess energy at large angles relative to unquenched jets of same energy
 ⇒Lost energy flows to larger angles

Pb+Pb Gamma-jet balance

γ-jet measurements are considered vital for understanding jet quenching

-Though rates are a serious limitation

⇒ expect ~ x10 increase in statistics from 2015 Pb+Pb run

- Run 1 results from CMS compared to two different energy loss calculations (post-dictions):
 - -beware inversion of symbol colors, different normalization

Weak coupling, Vitev et al, 10.1103/PhysRevLett.110.142001

Hybrid strong & weak coupling, Casalderrey-Solana et al, arXiv:1508.00815

Dijet asymmetry with unfolding

• Jet energy resolution important in Pb+Pb measurements – Centrality-dependent UE contributions

 ATLAS presented results for Pb+Pb dijet asymmetry using 2-dimensional unfolding at Quark Matter 2015

 \Rightarrow Should provide better tests of energy loss models

Summary

- A brief overview of LHC heavy ion program focused on two major topics:
 - Long λ : Collective flow
 - Short λ : High p_T probes, jet quenching
- Collective flow
 - -There has been a continual evolution in detail and sophistication of Pb+Pb measurements
 - \Rightarrow e.g. event-by-event measurements
 - \Rightarrow driven by and driving theoretical progress
 - Observation of flow-like behavior in p+Pb and p+p collisions has taken us all by surprise
 - \Rightarrow Is it really (final-state) collective flow as in Pb+Pb?
 - \Rightarrow Or an initial-state effect?
 - » Not yet clear, but similarity with Pb+Pb is striking

Summary (2)

• High-p_T probes, jet quenching

- Measurements of electroweak bosons show that we understand hard scattering in Pb+Pb collisions.
 ⇒We aren't (yet) sensitive to nuclear PDF effects
- Hadron and (better) jet R_{AA} measurements directly probe energy loss of the parent partons
 - \Rightarrow quantitative/theoretical analysis of jet data needed
- Fragmentation function measurements show complicated pattern of modifications
 - \Rightarrow no comprehensive understanding yet (early)
- Measurements of angular distribution show energy flows to large angles
 - ⇒as expected, but detailed theoretical analysis and better/ more differential data needed

– dijet and gamma-jet measurements important

 \Rightarrow statistics (Run 2) and jet response potential limitations