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The magnetic moment of the muon

Interaction of particle with static magnetic field

V (~x) = −~µ · ~Bext

The magnetic moment ~µ is proportional to its spin (c = ~ = 1)

~µ = g
( e

2m

)
~S

The Landé g -factor is predicted from the free Dirac eq. to be

g = 2

for elementary fermions
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The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

〈µ(p′)|Jµ|µ(p)〉 = ū(p′)
(
γµ F1(q2) + i

[γµ, γν ] qν

2

F2(q2)

2m

)
u(p)

which results from Lorentz invariance and charge conservation
when the muon is on-mass-shell and where q = p′ − p

F2(0) =
g − 2

2
≡ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)
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The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding Γµ(q2) in QED coupling constant

α =
e2

4π
=

1

137
+ . . .

Corrections begin at O(α); Schwinger term = α
2π = 0.0011614 . . .

hadronic contributions ∼ 6× 10−5 smaller, dominate theory error.
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Experiment - Standard Model Theory = difference

SM Contribution Value±Error (×1011) Ref
QED (5 loops) 116584718.951± 0.080 [Aoyama et al., 2012]

HVP LO 6923± 42 [Davier et al., 2011]

6949± 43 [Hagiwara et al., 2011]

HVP NLO −98.4± 0.7 [Hagiwara et al., 2011]

[Kurz et al., 2014]

HVP NNLO 12.4± 0.1 [Kurz et al., 2014]

HLbL 105± 26 [Prades et al., 2009]

HLbL (NLO) 3± 2 [Colangelo et al., 2014b]

Weak (2 loops) 153.6± 1.0 [Gnendiger et al., 2013]

SM Tot (0.42 ppm) 116591802± 49 [Davier et al., 2011]

(0.43 ppm) 116591828± 50 [Hagiwara et al., 2011]

(0.51 ppm) 116591840± 59 [Aoyama et al., 2012]

Exp (0.54 ppm) 116592089± 63 [Bennett et al., 2006]

Diff (Exp−SM) 287± 80 [Davier et al., 2011]

261± 78 [Hagiwara et al., 2011]

249± 87 [Aoyama et al., 2012]
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New experiments+new theory=new physics

Fermilab E989 early 2017, aims for 0.14 ppm

J-PARC E34 late 2010’s, aims for 0.3-0.4 ppm

Today aµ(Expt)-aµ(SM) ≈ 2.9− 3.6σ

If both central values stay the same,

E989 (∼ 4× smaller error) → ∼ 5σ
E989+new HLBL theory (models+lattice, 10%) → ∼ 6σ
E989+new HLBL +new HVP (50% reduction) → ∼ 8σ

Good for discriminating models if discovery of BSM at LHC
[Stckinger, 2013]

Lattice calculations important to trust theory errors
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Hadronic light-by-light (HLbL) scattering

+ + · · ·

Models: (105± 26)× 10−11
[Prades et al., 2009, Benayoun et al., 2014]

(116± 40)× 10−11
[Jegerlehner and Nyffeler, 2009]

systematic errors difficult to quantify

First non-PT QED+QCD calculation [Blum et al., 2015b]

Very rapid progress with pQED+QCD [Blum et al., 2015c]

New HLbL scattering calculation by Mainz group [Green et al., 2015]

Dispersive approach difficult, but progress is being made
[Colangelo et al., 2014c, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015a]
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Brief aside: Lattice setup

Compute correlation functions (e.g. 〈jµ(x)jν(y)〉, jµ = ψ̄γµψ)
in Feynman path integral formalism

4(5)D hypercubic lattice regularization, non-zero lattice
spacing a and finite volume V (extrap a→ 0, V →∞)

Handle fermion integrals analytically. Propagators inverse of
large sparse matrix M, lattice Dirac operator (domain wall,
staggered, Wilson, ...). Costliest part of calculation

Do path integrals over gauge fields stochastically by Monte
Carlo importance sampling: generate ensemble of gauge field
configurations {U(x)} with weight detM(U) exp−Sg , then
〈· · · 〉 simple average over ensemble

Statistical errors O(1/
√
Nmeas)

work entirely in Euclidean space time, analytically continue
back to Minkowski at the end (usually trivial)
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Point source method in pQED (L. Jin) [Blum et al., 2015c]

sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.

xsrc xsnky
′
, σ

′
z
′
, κ

′ x
′
, ρ

′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky
′
, σ

′
x
′
, ρ

′ z
′
, κ

′

xop, ν

z, κ

y, σ x, ρ

Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. IID) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being
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+ 4 more

Compute quark loop non-perturbatively using lattice QCD

Photons, muon on lattice, but use (exact) tree-level props

Work in configuration space

Key insight: quark loop exponentially suppressed with x and y
separation. Concentrate on “short distance” (π Compton λ)

Do QED two-loop, quark-loop integrals stochastically

Chiral (DW) fermions at finite lattice spacing: UV properties
like in continuum, modified by O(a2)
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Point source method (L. Jin) [Blum et al., 2015c]

Importance sampling strategy: focus on “short” distance (<∼
pion λC ). Choose two points x , y on quark loop randomly
with empirical distribution. Other two points summed over
exactly (including external photon vertex)

WI satisfied on each config (important to control statistical
error as q → 0 where correlation function vanishes)

sulting amplitude will have the form given in Eq. (3) up to finite lattice spacing corrections.

However, for the method described in the previous section, the vertices x, xop, y and z

appear in a specific order on the quark loop. We have not computed all three possible

insertions for the external photon. Consequently, the individual samples will not yield a

conserved current. The Ward identity necessary for the external current to have a vanishing

divergence will be obeyed only after the stochastic average over x and y, which makes the

three internal photon vertices on the quark line indistinguishable. As a result, the noise will

not vanish when q = 0.

To make the contribution of each configuration (and hence the statistical noise) vanish

as q → 0, we must compute the three diagrams in Fig. 5 so that the required Ward identity

is obeyed configuration by configuration [19].

xsrc xsnky
′
, σ

′
z
′
, κ

′ x
′
, ρ

′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky
′
, σ

′
z
′
, κ

′ x
′
, ρ

′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky
′
, σ

′
z
′
, κ

′ x
′
, ρ
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Figure 5. Diagrams showing the three different possible insertions of the external photon when

the vertices x and y are fixed. They are equal to each other after stochastic average. Note,

the five other possible permutations of the connections between the three internal photons and

the muon line are not shown. The left-hand diagram represents the single amplitude that would

be computed following the method of Sec. II A. The center diagram requires the computation of

sequential propagators at xop for each polarizations of the external photon. Finally the right-hand

diagram also requires sequential propagators at xop, but with the external photon momentum in

the opposite direction, since γ5-hermiticity must be used to reverse the direction of the propagators,

which reverses the momentum of the external photon as well.

These additional diagrams are also computationally accessible. In addition to the point-

source propagators from the sites x and y, we must compute sequential propagators as

discussed in Sec. IIA for each possible polarization and momentum of the external current.

We normally compute three polarization directions x, y, and t (which are perpendicular to

16

Moment method (e iq·x ≈ 1 + iq · x) allows direct q = 0 calc

AMA used for quark propagators. Separate quark propagators
into low and high mode parts. Treat low exactly, high approx
(cheap). Remove bias with correction (comp infreq).
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Point source method (L. Jin) [Blum et al., 2015c]

First results for connected contribution[Blum et al., 2015c]:
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AMA: 1000 LM, >∼ 6000 meas/conf, 23 conf

F2(0)/(α/π)3 = 0.1054(54) (connected contribution)
5% statistical error for nearly physical pion mass!

13.2 BG/Q Rack-days (Rack = 1024 nodes = 16384 cores )
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Continuum and ∞ volume limits in QED (L. Jin) [Blum et al., 2015c]

QED systematics large, O(a4), O(1/L2), but under control
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Limits quite consistent with well known PT result

Very good check on method/code
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Physical point (mπ = 140 MeV) calculation [Jin et al., 2015]

ALCC award on MIRA (100 PF BG/Q) at ANL ALCF,

Physical mass 2+1f Möbius DWF ensemble (RBC/UKQCD),
(5.5 fm)3 QCD box, a = 0.114 fm (a−1 = 1.7848 GeV)

Use AMA with 2000 low-modes, ∼ 4500 sloppy props per
configuration
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Expect 25-30% FV, 10-20% non-zero a errors
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Disconnected contribution (M. Hayakawa) [Hayakawa et al., 2015]
NOT Yet Disconnected Diagrams 10/32

xsrc xsnky′, σ′ x′, ρ′ z′, ν′
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z, νy, σ x, ρ

xsrc xsnkz′, ν′ y′, σ′ x′, ρ′
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z, ν
y, σ x, ρ

xsrc xsnkz′, ν′
y′, σ′ x′, ρ′

xop, µ

z, ν y,σ x, ρ

Figure 6. All possible disconnected diagrams. Permutations of the three internal photons are not
shown.

• We will not discuss disconnected diagrams in this talk.

• The gluons exchange between and with quark loops are not drawn. Common practice in
lattice QCD.

• Possible strategies for the calculation of all disconnected diagrams are being developed
and we hope to begin numerical experiments this year.

+ perms

SU(3) Flavor (only 1 survives), Zweig suppressed

But, needed to cancel 1 π0 exchange to get η′ right

Requires explicit HVP subtraction when any quark loop with
two photons is not connected to others by gluons

Use same importance sampling as for connected

Tests underway on small lattice
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Solving QED FV effects [Jin et al., 2015]

Integrand exponentially suppressed with distance between any
pair of points on the quark loop. FV effect is small.

Amplitude not suppressed with distance between points on
muon line and loop. FV effect is large.

Put QED in larger box, QCD unchanged

use ∞ volume photon on finite box (Lehner, Lattice 2015)

Can compute average QCD loop and do muon line once,
offline, so free to experiment with size of QED box
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Hadronic Vacuum Polarization (HVP) contribution to g-2

+
Using lattice QCD and continuum, ∞-volume pQED
[Blum, 2003, Lautrup et al., 1971]

aHVP
µ =

(α
π

)2
∫ ∞

0
dq2 f (q2) Π̂(q2)

f (q2) is known, Π̂(q2) is subtracted HVP, Π̂(q2) = Π(q2)− Π(0)

Πµν(q) =

∫
e iqx〈jµ(x)jν(0)〉 jµ(x) =

∑

i

Qi ψ̄(x)γµψ(x)

= Π(q2)(qµqν − q2δµν)
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Disconnected contribution to HVP (C. Lehner) [Blum et al., 2015a]

Expected to be small (vanishes in SU(3) limit)

Still important to reach (sub-) percent precision

Physical pion mass Möbius-DWF ensemble RBC/UKQCD

use All-to-All strategy [Foley et al., 2005]

Compute (2000) low-mode contribution exactly, on every point
of lattice (enormous gain in statistics)
Compute high mode part stochastically using “sparse” grids of
random Z2 noise sources

(degenerate)light - strange difference computed directly
(Mainz Group [Gulpers et al., 2014])

Use AMA strategy
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Disconnected Contribution to HVP (C. Lehner) [Blum et al., 2015a]

Low mode separation crucial since light- strange don’t cancel

contributions above ms suppressed

(sparse) random sources effective for high modes

Π(q2)− Π(0) =
∑

t

(
cos(qt)− 1

q2
+

1

2
t2

)
C (t)

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 0  5  10  15  20

C
(t

)

t

Low-mode contribution
Full contribution

−(9.6± 3.3)× 10−10 or about 1.5% of total at 3 σ level

21



Disconnected Contribution to HVP Systematics

non-zero lattice spacing: proxy strange-connected 5%

FV, ChiPT [Aubin et al., 2015, Della Morte and Juttner, 2010]: 14.6%
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FIG. 3. Zero-momentum projected correlator C(t) and C(t)+
Cs(t). A correlated fit of ⇢(770) and �(1020) exponentials via
c⇢e

�E⇢t+c�e�E�t in the region t 2 [11, . . . , 17] to C(t)+Cs(t)
yields a p-value of 0.12. We use fixed energies E⇢ = 770 MeV
and E� = 1020 MeV and fit parameters c⇢ and c�.
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FIG. 4. Coe�cients and p-values of a fit of c⇢e
�E⇢t +c�e�E�t

to C(t) + Cs(t) in the region t 2 [tmin, . . . , 17].

above Wick contractions, we can represent it as a sum
over individual exponentials C(t)+Cs(t) =

P
m cme�Emt

with cm 2 R and Em 2 R+. The coe�cients cm can
be negative because positivity arguments only apply to
some individual Wick contractions in Eq. (12) but not
necessarily to the sum.

We show C(t) and Cs(t) obtained in our lattice QCD
computation in Fig. 3. Starting from time-slices 17, 18
the correlator C(t) is not well resolved from zero, how-
ever, from time-slices 11 to 17 a two-state fit including the
⇢(770) and �(1020) describes C(t)+Cs(t) well. Here the ⇢
is a proxy for combined ⇢ and ! contributions due to their
similar energy. Since these states are not stable in our
lattice simulation, however, this representation using in-
dividual exponentials only serves as a model that fits the
data well. Since this model will only enter our systematic
error estimate, we find this imperfection to be acceptable.
A systematic study of di↵erent fit ranges is presented in
Fig. 4, where p-values greater than 0.05 are found for all
fit-ranges t 2 [tmin, . . . , 17] with tmin 2 [8, . . . , 12].

We now define the partial sums

LT =

TX

t=0

wtC(t) , (13)

FT (r) =

tmaxX

t=T+1

wt(c
r
⇢e

�E⇢t + cr
�e�E�t � Cs(t)) , (14)

where cr
⇢ and cr

� are the parameters of the fit with fit-
range r and tmax = 24 for our setup. For su�ciently large
T , LT is expected to exhibit a plateau region as function

of T from which we can determine a
HVP (LO) DISC
µ . The

sum LT +FT is also expected to exhibit such a plateau to
the extent that the model in FT describes the data well.

Based on Fig. 4, we choose r = [11, . . . , 17] as pre-
ferred fit-range to determine FT but a cross-check with
r = [12, . . . , 17] has been performed yielding a consis-
tent result. Figure 5 shows the resulting plateau-region
for LT and LT + FT . In order to avoid contamina-
tion of our first-principles computation with the model-

dependence of FT , we determine a
HVP (LO) DISC
µ from

LT=20 and include FT=20 as systematic uncertainty esti-
mating a potentially missing long-time tail. We choose
the value at T = 20 since it appears to be safely within
a plateau region but su�ciently far from T = 24 to
suppress backwards-propagating e↵ects [32]. We find

a
HVP (LO) DISC
µ = �9.6(3.3) ⇥ 10�10.

We expect the finite lattice spacing and finite simula-
tion volume as well as long-time contributions to Eq. (9)
to dominate the systematic uncertainties of our result.
With respect to the finite lattice spacing a reasonable
proxy for the current computation may be our HVP
connected strange-quark analysis [33] for which the 483

result at a�1 = 1.73 GeV agrees within O(5%) with
the continuum-extrapolated value. This is also consis-
tent with a näıve O(a2⇤2

QCD) power counting, appropri-
ate for the domain-wall fermion action used here. The
combined e↵ect of the finite spatial volume and poten-
tially missing two-pion tail is estimated using a one-loop
finite-volume lattice-regulated chiral perturbation theory
(ChPT) version of Eq. (5.1) of Ref. [31]. Our ChPT
computation also agrees with Eq. (2.12) of Ref. [34] af-
ter correcting for a missing factor of two in the first
version of Ref. [34]. The ChPT result is then trans-
formed to position space to obtain C(t). Fig. 6 shows
a corresponding study of LT for di↵erent volumes. We
take the di↵erence of LT=20 on the 483 ⇥ 96 lattice used
here and LT=48 on the 963 ⇥ 192 lattice and obtain
�aFV,⇡⇡

µ = 1.4 ⇥ 10�10. The remaining long-time ef-
fects are estimated by FT=20. We compare the result
for two fit-ranges FT=20([11, . . . , 17]) = �1.1(6) ⇥ 10�10

and FT=20([12, . . . , 17]) = �0.6(0.9)⇥10�10. We conser-
vatively take the one-sigma bound �aFT = 1.7⇥10�10 as
additional uncertainty.

Combining the systematic uncertainties in quadrature,

−(9.6± 3.3± 2.3)× 10−10

Better than 1% accuracy on total HVP!
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Quark Connected Contribution to HVP

Relatively harder: need (sub) percent accuracy

On going calculations at the physical point by several groups

Current calculations, >∼ 3% error (aggressive)

Finite volume effects significant barrier [Aubin et al., 2015]

lots of activity by many groups
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Calculation in the SM

CP violated in K → ππI=0,2 decays (ε′), K − K mixing (ε)

Re

(
ε′

ε

)
= Re

{
iωe i(δ2−δ0)

√
2ε

[
ImA2

ReA2
− ImA0

ReA0

]}

= 1.66(23)× 10−3 (exp)

[Batley et al., 2002, Alavi-Harati et al., 2003]

where A0, A1 computed in SM from 〈K |HW |ππI=0,2〉,

HW =
GF√

2
V ∗usVud

10∑

i=1

[
zi (µ) + τyi (µ)

]
Qi (µ).

where τ = −V ∗tsVtd/V
∗
usVud encodes the phase of the CKM matrix

and yi , zi are Wilson coefficients
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Lattice Calculation of K → ππ

Lellouch-Lüscher method: finite volume →∞ volume

For I=0 use G-parity boundary conditions (conserves isospin),
physical kinematics for ground state [Kim and Christ, 2009]

I=0 difficult: disconnected diagrams! Use All-to-all strategy

Lattice operators renormalized non-perturbatively, matched to
MS with continuum PT

A0: 323 (4.6 fm), physical point 2+1 Möbius-DWF (G-parity)

A2: 483 and 643 (5.5 fm), physical point 2+1 Möbius-DWF
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Calculation in the SM (C. Kelly, D. Zhang)
[Bai et al., 2015]

i Re(A0)(GeV) Im(A0)(GeV)

1 1.02(0.20)(0.07)× 10−7 0

2 3.63(0.91)(0.28)× 10−7 0

3 −1.19(1.58)(1.12)× 10−10 1.54(2.04)(1.45)× 10−12

4 −1.86(0.63)(0.33)× 10−9 1.82(0.62)(0.32)× 10−11

5 −8.72(2.17)(1.80)× 10−10 1.57(0.39)(0.32)× 10−12

6 3.33(0.85)(0.22)× 10−9 −3.57(0.91)(0.24)× 10−11

7 2.40(0.41)(0.00)× 10−11 8.55(1.45)(0.00)× 10−14

8 −1.33(0.04)(0.00)× 10−10 −1.71(0.05)(0.00)× 10−12

9 −7.12(1.90)(0.46)× 10−12 −2.43(0.65)(0.16)× 10−12

10 7.57(2.72)(0.71)× 10−12 −4.74(1.70)(0.44)× 10−13

Tot 4.66(0.96)(0.27)× 10−7 −1.0(1.19)(0.32)× 10−11

Description Error Description Error

Finite lattice spacing 8% Finite volume 7%
Wilson coefficients 12% Excited states ≤ 5%
Parametric errors 5% Operator renormalization 15%
Unphysical kinematics ≤ 3% Lellouch-Lüscher factor 11%
Total (added in quadrature) 26%
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Calculation in the SM (T. Janowski)
[Blum et al., 2015d]

ReA2 dominated by (27,1) operator , ImA2 (8,8)

ReA2 systematic errors 483 643 cont.
NPR (nonperturbative) 0.1% 0.1% 0.1%
NPR (perturbative) 2.9% 2.5% 2.9%
Finite-volume corrections 2.2% 2.4% 2.4%
Unphysical kinematics 1.8% 4.5% 4.5%
Wilson coefficients 6.8% 6.8% 6.8%
Derivative of the phase shift 1.1% 0.6% 1.1%
Total 8% 9% 9%

ImA2 systematic errors 483 643 cont
NPR (nonperturbative) 0.1% 0.1% 0.1%
NPR (perturbative) 7.0% 6.2% 7.0%
Finite-volume corrections 2.4% 2.6% 2.6%
Unphysical kinematics 0.2% 1.1% 1.1%
Wilson coefficients 10% 8% 10%
Derivative of the phase shift 1.1% 0.6% 1.1%
Total 12% 10% 12%

Re
(
ε′
ε

)
= 1.38(5.15)(4.43)× 10−4, 2.1 σ below experiment
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Calculation in the SM

ReA0, ReA2 agree with experimental values, good check of
our methods

∆I = 1/2 rule explanation: strong cancelation between
dominant contractions in ReA2, sum in ReA0

[Boyle et al., 2013, Blum et al., 2015d]

i j

j

i

π

πKi i

j

j

π

πK

combined with enhancement from Wilson coefficients

We find δ0 = 23.8(4.9)(1.2)◦ which is somewhat below the
value determined from the Roy equation analysis
[Colangelo et al., 2001, Colangelo et al., 2015b]
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Summary/Outlook

“physical point” ensembles / improved meas. tech. are powerful:

11% stat. errors for connected HLBL contribution to g-2.
moving on to disconnected HLBL, non-zero a, FV systematics

40% errors for disconnected HVP (already below 1 percent).
moving on to connected HVP (1% stat, 3% total soon)

First complete calculation of ε′/ε (2.1 σ diff with SM).
Working now to decrease uncertainty in our result by 2
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