Precision EW calculations for future experiments

(Hadronic contributions to the muon anomalous magnetic moment and Direct CP violation in Kaon decays from lattice QCD)

Tom Blum (UCONN/RBRC)

2016 Aspen Winter Conference on Particle Physics

イロト イロト イヨト イヨト 二日

HVP	HLbL
Christopher Aubin (Fordham U)	
Maarten Golterman (SFSU)	Norman Christ (Columbia)
Santiago Peris (Barcelona)	Masashi Hayakawa (Nagoya)
Cheng Tu (UConn)	Taku Izubuchi (BNL/RBRC)
	Luchang Jin (Columbia)
	Christoph Lehner (BNL)

RBC/UKQCD Collaboration

The RBC & UKQCD collaborations

BNL and RBRC

Tomomi Ishikawa Taku Izubuchi Chulwoo Jung Christoph Lehner Meifeng Lin Taichi Kawanai Christopher Kelly Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

<u>CERN</u>

Marina Marinkovic

Columbia University

Ziyuan Bai Norman Christ Xu Feng Luchang Jin Bob Mawhinney Greg McGlynn David Murphy Daiqian Zhang

University of Connecticut

Tom Blum

Edinburgh University

Peter Boyle Luigi Del Debbio Julien Frison Richard Kenway Ava Khamseh Brian Pendleton Oliver Witzel Azusa Yamaguchi

Plymouth University

Nicolas Garron

University of Southampton

Jonathan Flynn Tadeusz Janowski Andreas Juettner Andrew Lawson Edwin Lizarazo Antonin Portelli Chris Sachrajda Francesco Sanfilippo Matthew Spraggs Tobias Tsang

York University (Toronto)

イロン 不良と 不良と 一度 …

Renwick Hudspith

Outline I

- Introduction
- HLbL
- HVP

Interaction of particle with static magnetic field

$$V(\vec{x}) = -\vec{\mu} \cdot \vec{B}_{\text{ext}}$$

The magnetic moment $ec{\mu}$ is proportional to its spin ($c=\hbar=1$)

$$\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{S}$$

The Landé g-factor is predicted from the free Dirac eq. to be

$$g = 2$$

for elementary fermions

The magnetic moment of the muon

which results from Lorentz invariance and charge conservation when the muon is on-mass-shell and where q = p' - p

$$F_2(0) = \frac{g-2}{2} \equiv a_{\mu} \qquad (F_1(0) = 1)$$

(the anomalous magnetic moment, or anomaly)

Compute these corrections order-by-order in perturbation theory by expanding $\Gamma^{\mu}(q^2)$ in QED coupling constant

$$\alpha = \frac{e^2}{4\pi} = \frac{1}{137} + \dots$$

$$\xrightarrow{s^{\alpha}} \alpha^{\alpha} + \frac{s^{\alpha}}{2\pi} +$$

Experiment - Standard Model Theory = difference

Ref	${\sf Value}{\pm}{\sf Error}({ imes}10^{11})$	SM Contribution
[Aoyama et al., 2012]	116584718.951 ± 0.080	QED (5 loops)
[Davier et al., 2011]	6923 ± 42	HVP LO
[Hagiwara et al., 2011]	6949 ± <mark>43</mark>	
[Hagiwara et al., 2011]	-98.4 ± 0.7	HVP NLO
[Kurz et al., 2014]		
[Kurz et al., 2014]	12.4 ± 0.1	HVP NNLO
[Prades et al., 2009]	105 <u>+</u> 26	HLbL
[Colangelo et al., 2014b]	3 ± 2	HLbL (NLO)
[Gnendiger et al., 2013]	153.6 ± 1.0	Weak (2 loops)
[Davier et al., 2011]	116591802 ± 49	SM Tot (0.42 ppm)
[Hagiwara et al., 2011]	116591828 ± 50	(0.43 ppm)
[Aoyama et al., 2012]	116591840 ± 59	(0.51 ppm)
[Bennett et al., 2006]	$116592089 \pm {63}$	Exp (0.54 ppm)
[Davier et al., 2011]	287 ± 80	Diff(Exp-SM)
[Hagiwara et al., 2011]	261 ± 78	
[Aoyama et al., 2012]	249 ± 87	

New experiments+new theory=new physics

- Fermilab E989 early 2017, aims for 0.14 ppm
- J-PARC E34 late 2010's, aims for 0.3-0.4 ppm
- Today $a_{\mu}(\mathrm{Expt})$ - $a_{\mu}(\mathrm{SM}) \approx 2.9 3.6\sigma$
- If both central values stay the same,
 - E989 (\sim 4imes smaller error) \rightarrow \sim 5 σ
 - E989+new HLBL theory (models+lattice, 10%) $ightarrow ~ 6\sigma$
 - E989+new HLBL +new HVP (50% reduction) $ightarrow~8\sigma$
- Good for discriminating models if discovery of BSM at LHC [Stekinger, 2013]
- Lattice calculations important to trust theory errors

Hadronic light-by-light (HLbL) scattering

• Models: $(105 \pm 26) \times 10^{-11}$ [Prades et al., 2009, Benayoun et al., 2014] $(116 \pm 40) \times 10^{-11}$ [Jegerlehner and Nyffeler, 2009]

systematic errors difficult to quantify

- First non-PT QED+QCD calculation [Blum et al., 2015b]
- Very rapid progress with pQED+QCD [Blum et al., 2015c]
- New HLbL scattering calculation by Mainz group [Green et al., 2015]
- Dispersive approach difficult, but progress is being made

[Colangelo et al., 2014c, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015a]

・ロット 白田 マネ ボマン・

Brief aside: Lattice setup

- Compute correlation functions (e.g. $\langle j^{\mu}(x)j^{\nu}(y)\rangle$, $j^{\mu} = \bar{\psi}\gamma_{\mu}\psi$) in Feynman path integral formalism
- 4(5)D hypercubic lattice regularization, non-zero lattice spacing a and finite volume V (extrap a → 0, V → ∞)
- Handle fermion integrals analytically. Propagators inverse of large sparse matrix *M*, lattice Dirac operator (domain wall, staggered, Wilson, ...). Costliest part of calculation
- Do path integrals over gauge fields stochastically by Monte Carlo importance sampling: generate ensemble of gauge field configurations {U(x)} with weight det M(U) exp −S_g, then ⟨···⟩ simple average over ensemble
- Statistical errors $O(1/\sqrt{N_{\rm meas}})$
- work entirely in Euclidean space time, analytically continue back to Minkowski at the end (usually trivial)

11

Point source method in pQED (L. Jin) [Blum et al., 2015c]

- Compute quark loop non-perturbatively using lattice QCD
- Photons, muon on lattice, but use (exact) tree-level props
- Work in configuration space
- Key insight: quark loop exponentially suppressed with x and y separation. Concentrate on "short distance" (π Compton λ)
- Do QED two-loop, quark-loop integrals stochastically
- Chiral (DW) fermions at finite lattice spacing: UV properties like in continuum, modified by $O(a^2)$

Point source method (L. Jin) [Blum et al., 2015c]

- Importance sampling strategy: focus on "short" distance (\lesssim pion λ_C). Choose two points x, y on quark loop randomly with empirical distribution. Other two points summed over exactly (including external photon vertex)
- WI satisfied on each config (important to control statistical error as q → 0 where correlation function vanishes)

- Moment method $(e^{iq\cdot x}pprox 1+iq\cdot x)$ allows direct q=0 calc
- AMA used for quark propagators. Separate quark propagators into low and high mode parts. Treat low exactly, high approx (cheap). Remove bias with correction (comp infreq).

Point source method (L. Jin) [Blum et al., 2015c]

• First results for connected contribution[Blum et al., 2015c]:

171 MeV pion, $m_{\pi}L \gtrsim$ 4, $m_{\mu} =$ 128 MeV, L = 4.6 fm AMA: 1000 LM, \gtrsim 6000 meas/conf, 23 conf

 $F_2(0)/(\alpha/\pi)^3 = 0.1054(54)$ (connected contribution) 5% statistical error for nearly physical pion mass!

• 13.2 BG/Q Rack-days (Rack = 1024 nodes = 16384 cores)

QED systematics large, $O(a^4)$, $O(1/L^2)$, but under control

- a set using physical muon mass, *i.e.*, input parameter am_{μ}
- Limits quite consistent with well known PT result
- Very good check on method/code

Physical point ($m_{\pi}=140$ MeV) calculation [Jin et al., 2015]

ALCC award on MIRA (100 PF BG/Q) at ANL ALCF,

- Physical mass 2+1f Möbius DWF ensemble ($_{RBC/UKQCD}$), (5.5 fm)³ QCD box, a = 0.114 fm ($a^{-1} = 1.7848$ GeV)
- $\bullet\,$ Use AMA with 2000 low-modes, \sim 4500 sloppy props per configuration

Preliminary: $(0.0854 \pm 0.0098) \times (\alpha/\pi)^3$,

connected HLbL contribution (11% statistical error) models: (0.0837 \pm 0.0207) \times $(\alpha/\pi)^3$ Expect 25-30% FV, 10-20% non-zero a errors

Disconnected contribution (M. Hayakawa) [Hayakawa et al., 2015]

- SU(3) Flavor (only 1 survives), Zweig suppressed
- But, needed to cancel 1 π^0 exchange to get η' right
- Requires explicit HVP subtraction when any quark loop with two photons is not connected to others by gluons
- Use same importance sampling as for connected
- Tests underway on small lattice

- Integrand exponentially suppressed with distance between any pair of points on the quark loop. FV effect is small.
- Amplitude *not* suppressed with distance between points on muon line and loop. FV effect is large.
- Put QED in larger box, QCD unchanged
- use ∞ volume photon on finite box (Lehner, Lattice 2015)
- Can compute average QCD loop and do muon line once, offline, so free to experiment with size of QED box

Hadronic Vacuum Polarization (HVP) contribution to g-2

Using lattice QCD and continuum, ∞ -volume pQED

[Blum, 2003, Lautrup et al., 1971]

$$a_{\mu}^{\mathrm{HVP}} = \left(rac{lpha}{\pi}
ight)^2 \int_0^\infty dq^2 \, f(q^2) \, \hat{\mathsf{\Pi}}(q^2)$$

 $f(q^2)$ is known, $\hat{\Pi}(q^2)$ is subtracted HVP, $\hat{\Pi}(q^2) = \Pi(q^2) - \Pi(0)$

$$\begin{aligned} \Pi^{\mu\nu}(q) &= \int e^{iqx} \langle j^{\mu}(x) j^{\nu}(0) \rangle \qquad j^{\mu}(x) = \sum_{i} Q_{i} \bar{\psi}(x) \gamma^{\mu} \psi(x) \\ &= \Pi(q^{2}) (q^{\mu} q^{\nu} - q^{2} \delta^{\mu\nu}) \end{aligned}$$

Disconnected contribution to HVP (C. Lehner) [Blum et al., 2015a]

- Expected to be small (vanishes in SU(3) limit)
- Still important to reach (sub-) percent precision
- Physical pion mass Möbius-DWF ensemble RBC/UKQCD
- use All-to-All strategy [Foley et al., 2005]
 - Compute (2000) low-mode contribution exactly, on every point of lattice (enormous gain in statistics)
 - Compute high mode part stochastically using "sparse" grids of random Z_2 noise sources
- (degenerate)light strange difference computed directly (Mainz Group [Gulpers et al., 2014])
- Use AMA strategy

Disconnected Contribution to HVP (C. Lehner) [Blum et al., 2015a]

- Low mode separation crucial since light- strange don't cancel
- contributions above m_s suppressed
- (sparse) random sources effective for high modes

$$\Pi(q^2) - \Pi(0) = \sum_t \left(\frac{\cos(qt) - 1}{q^2} + \frac{1}{2}t^2 \right) C(t)$$

Disconnected Contribution to HVP Systematics

• non-zero lattice spacing: proxy strange-connected 5%

missing long distance piece 17.7%

 $-(9.6 \pm 3.3 \pm 2.3) \times 10^{-10}$

Better than 1% accuracy on total HVP!

Quark Connected Contribution to HVP

- Relatively harder: need (sub) percent accuracy
- On going calculations at the physical point by several groups
- Current calculations, $\gtrsim 3\%$ error (aggressive)
- Finite volume effects significant barrier [Aubin et al., 2015]
- lots of activity by many groups

Outline I

1 muon g-2

- Introduction
- HLbL
- HVP

3 Summary/Outlook

Calculation in the SM

CP violated in $K \to \pi \pi_{I=0,2}$ decays (ϵ'), $K - \overline{K}$ mixing (ϵ)

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_2}{\operatorname{Re}A_2} - \frac{\operatorname{Im}A_0}{\operatorname{Re}A_0}\right]\right\}$$
$$= 1.66(23) \times 10^{-3} \quad (\operatorname{exp})$$

[Batley et al., 2002, Alavi-Harati et al., 2003]

where A_0 , A_1 computed in SM from $\langle K|H_W|\pi\pi_{I=0,2}\rangle$,

$$H_W = \frac{G_F}{\sqrt{2}} V_{us}^* V_{ud} \sum_{i=1}^{10} [z_i(\mu) + \tau y_i(\mu)] Q_i(\mu).$$

where $\tau = -V_{ts}^* V_{td} / V_{us}^* V_{ud}$ encodes the phase of the CKM matrix and y_i , z_i are Wilson coefficients

Lattice Calculation of $K \to \pi \pi$

- \bullet Lellouch-Lüscher method: finite volume $\rightarrow \infty$ volume
- For I=0 use G-parity boundary conditions (conserves isospin), physical kinematics for ground state [Kim and Christ, 2009]
- I=0 difficult: disconnected diagrams! Use All-to-all strategy

- \bullet Lattice operators renormalized non-perturbatively, matched to $\overline{\rm MS}$ with continuum PT
- A₀: 32³ (4.6 fm), physical point 2+1 Möbius-DWF (G-parity)
- A_2 : 48³ and 64³ (5.5 fm), physical point 2+1 Möbius-DWF

Calculation in the SM (C. Kelly, D. Zhang)

[Bai et al., 2015]

i	$Re(A_0)(GeV)$	$Im(A_0)(GeV)$
1	$1.02(0.20)(0.07) \times 10^{-7}$	0
2	$3.63(0.91)(0.28) \times 10^{-7}$	0
3	$-1.19(1.58)(1.12) \times 10^{-10}$	$1.54(2.04)(1.45) \times 10^{-12}$
4	$-1.86(0.63)(0.33) \times 10^{-9}$	$1.82(0.62)(0.32) \times 10^{-11}$
5	$-8.72(2.17)(1.80) \times 10^{-10}$	$1.57(0.39)(0.32) \times 10^{-12}$
6	$3.33(0.85)(0.22) \times 10^{-9}$	$-3.57(0.91)(0.24) \times 10^{-11}$
7	$2.40(0.41)(0.00) \times 10^{-11}$	$8.55(1.45)(0.00) imes 10^{-14}$
8	$-1.33(0.04)(0.00) \times 10^{-10}$	$-1.71(0.05)(0.00) \times 10^{-12}$
9	$-7.12(1.90)(0.46) \times 10^{-12}$	$-2.43(0.65)(0.16) \times 10^{-12}$
10	$7.57(2.72)(0.71) \times 10^{-12}$	$-4.74(1.70)(0.44) \times 10^{-13}$
Tot	$4.66(0.96)(0.27) \times 10^{-7}$	$-1.0(1.19)(0.32) \times 10^{-11}$

Description	Error	Description	Error
Finite lattice spacing	8%	Finite volume	7%
Wilson coefficients	12%	Excited states	\leq 5%
Parametric errors	5%	Operator renormalization	15%
Unphysical kinematics	\leq 3%	Lellouch-Lüscher factor	11%
Total (added in quadrati	ure)		26%

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへぐ

Calculation in the SM (T. Janowski)

[Blum et al., 2015d]

ReA_2 dominated by (27,1) operator , ImA_2 (8,8)

ReA ₂ systematic errors	48 ³	64 ³	cont.
NPR (nonperturbative)	0.1%	0.1%	0.1%
NPR (perturbative)	2.9%	2.5%	2.9%
Finite-volume corrections	2.2%	2.4%	2.4%
Unphysical kinematics	1.8%	4.5%	4.5%
Wilson coefficients	6.8%	6.8%	6.8%
Derivative of the phase shift	1.1%	0.6%	1.1%
Total	8%	9%	9%
ImA ₂ systematic errors	48 ³	64 ³	cont
ImA ₂ systematic errors NPR (nonperturbative)	48 ³ 0.1%	64 ³ 0.1%	cont 0.1%
ImA ₂ systematic errors NPR (nonperturbative) NPR (perturbative)	48 ³ 0.1% 7.0%	64 ³ 0.1% 6.2%	cont 0.1% 7.0%
ImA ₂ systematic errors NPR (nonperturbative) NPR (perturbative) Finite-volume corrections	48 ³ 0.1% 7.0% 2.4%	64 ³ 0.1% 6.2% 2.6%	cont 0.1% 7.0% 2.6%
ImA ₂ systematic errors NPR (nonperturbative) NPR (perturbative) Finite-volume corrections Unphysical kinematics	48 ³ 0.1% 7.0% 2.4% 0.2%	64 ³ 0.1% 6.2% 2.6% 1.1%	cont 0.1% 7.0% 2.6% 1.1%
ImA ₂ systematic errors NPR (nonperturbative) NPR (perturbative) Finite-volume corrections Unphysical kinematics Wilson coefficients	48 ³ 0.1% 7.0% 2.4% 0.2% 10%	64 ³ 0.1% 6.2% 2.6% 1.1% 8%	cont 0.1% 7.0% 2.6% 1.1% 10%
ImA ₂ systematic errors NPR (nonperturbative) NPR (perturbative) Finite-volume corrections Unphysical kinematics Wilson coefficients Derivative of the phase shift	48 ³ 0.1% 7.0% 2.4% 0.2% 10% 1.1%	64 ³ 0.1% 6.2% 2.6% 1.1% 8% 0.6%	cont 0.1% 7.0% 2.6% 1.1% 10% 1.1%

$$\operatorname{Re}\left(rac{arepsilon'}{arepsilon}
ight)=1.38(5.15)(4.43) imes10^{-4}$$
, 2.1 σ below experiment

Calculation in the SM

- ReA₀, ReA₂ agree with experimental values, good check of our methods
- $\Delta I = 1/2$ rule explanation: strong cancelation between dominant contractions in Re A_2 , sum in Re A_0

[Boyle et al., 2013, Blum et al., 2015d]

combined with enhancement from Wilson coefficients

• We find $\delta_0 = 23.8(4.9)(1.2)^\circ$ which is somewhat below the value determined from the Roy equation analysis

[Colangelo et al., 2001, Colangelo et al., 2015b]

Outline I

1 muon g-2

- Introduction
- HLbL
- HVP

"physical point" ensembles / improved meas. tech. are powerful:

- 11% stat. errors for connected HLBL contribution to g-2. moving on to disconnected HLBL, non-zero *a*, FV systematics
- 40% errors for disconnected HVP (already below 1 percent). moving on to connected HVP (1% stat, 3% total soon)
- First complete calculation of ϵ'/ϵ (2.1 σ diff with SM). Working now to decrease uncertainty in our result by 2

◆□ → ◆□ → ◆三 → ◆三 → □ □

- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center, RIKEN, USQCD Collaboration, and ANL ALCF
- Lattice computations done on
 - Ds cluster at FNAL (USQCD)
 - USQCD BG/Q at BNL
 - UKQCD BG/Q at Edinburgh
 - Mira (BG/Q) at ALCF

Outline I

1 muon g-2

- Introduction
- HLbL
- HVP

3 Summary/Outlook

Alavi-Harati, A. et al. (2003).

Measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system.

Phys. Rev., D67:012005. [Erratum: Phys. Rev.D70,079904(2004)].

Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M. (2012). Complete Tenth-Order QED Contribution to the Muon g-2. *Phys.Rev.Lett.*, 109:111808.

Aubin, C., Blum, T., Chau, P., Golterman, M., Peris, S., and Tu, C. (2015).

Finite-volume effects in the muon anomalous magnetic moment on the lattice.

📔 Bai, Z. et al. (2015).

Standard Model Prediction for Direct CP Violation in K??? Decay. *Phys. Rev. Lett.*, 115(21):212001.

Batley, J. R. et al. (2002).

A Precision measurement of direct CP violation in the decay of neutral kaons into two pions.

Phys. Lett., B544:97-112.

Benayoun, M., Bijnens, J., Blum, T., Caprini, I., Colangelo, G., et al. (2014).

Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g - 2)_{\mu}$: Quo vadis? Workshop. Mini proceedings.

Bennett, G. et al. (2006).

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL.

Phys.Rev., D73:072003.

Blum, T. (2003).

Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment.

Phys.Rev.Lett., 91:052001.

Blum, T., Boyle, P. A., Izubuchi, T., Jin, L., Jttner, A., Lehner, C., Maltman, K., Marinkovic, M., Portelli, A., and Spraggs, M. (2015a) Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment.

Blum, T., Chowdhury, S., Hayakawa, M., and Izubuchi, T. (2015b).

Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

Phys.Rev.Lett., 114(1):012001.

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., and Lehner, C. (2015c).

Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment.

Blum, T. et al. (2015d).

 $K
ightarrow \pi \pi \ \Delta I = 3/2$ decay amplitude in the continuum limit.

Phys. Rev., D91(7):074502.

Boyle, P. A. et al. (2013).

Emerging understanding of the $\Delta I = 1/2$ Rule from Lattice QCD. Phys. Rev. Lett., 110(15):152001. Colangelo, G., Gasser, J., and Leutwyler, H. (2001).

 $\pi\pi$ scattering.

Nucl. Phys., B603:125-179.

Colangelo, G., Hoferichter, M., Kubis, B., Procura, M., and Stoffer, P. (2014a).

Towards a data-driven analysis of hadronic light-by-light scattering. *Phys.Lett.*, B738:6–12.

 Colangelo, G., Hoferichter, M., Nyffeler, A., Passera, M., and Stoffer, P. (2014b).
 Remarks on higher-order hadronic corrections to the muon g?2. *Phys. Lett.*, B735:90–91.

Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2014c).

Dispersive approach to hadronic light-by-light scattering. *JHEP*, 1409:091.

Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2015a).

Dispersion relation for hadronic light-by-light scattering: theoretical foundations.

Colangelo, G., Passemar, E., and Stoffer, P. (2015b).

A dispersive treatment of $K_{\ell 4}$ decays.

Eur. Phys. J., C75:172.

Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2011).

Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ).

Eur.Phys.J., C71:1515.

Della Morte, M. and Juttner, A. (2010).

Quark disconnected diagrams in chiral perturbation theory. *JHEP*, 1011:154.

Foley, J., Jimmy Juge, K., O'Cais, A., Peardon, M., Ryan, S. M., and Skullerud, J.-I. (2005).

Practical all-to-all propagators for lattice QCD.

Comput. Phys. Commun., 172:145-162.

Gnendiger, C., Stckinger, D., and Stckinger-Kim, H. (2013). The electroweak contributions to $(g - 2)_{\mu}$ after the Higgs boson mass measurement.

Phys.Rev., D88:053005.

 Green, J., Gryniuk, O., von Hippel, G., Meyer, H. B., and Pascalutsa, V. (2015).
 Lattice QCD calculation of hadronic light-by-light scattering.

Gulpers, V., Francis, A., Jger, B., Meyer, H., von Hippel, G., et al. (2014).

The leading disconnected contribution to the anomalous magnetic moment of the muon.

PoS, LATTICE2014:128.

Hagiwara, K., Liao, R., Martin, A. D., Nomura, D., and Teubner, T. (2011).
 (g - 2)_μ and alpha(M²_Z) re-evaluated using new precise data.
 J.Phys., G38:085003.

Hayakawa, M., Blum, T., Christ, N. H., Izubuchi, T., Jin, L. C., and Lehner, C. (2015). On calculating disconnected-type hadronic light-by-light scattering diagrams from lattice QCD.

In Proceedings, 33rd International Symposium on Lattice Field Theory (Lattice 2015).

Jegerlehner, F. and Nyffeler, A. (2009).

The Muon g-2.

Phys. Rept., 477:1-110.

Jin, L., Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., and Lehner, C. (2015).

Hadronic Light by Light Contributions to the Muon Anomalous Magnetic Moment With Physical Pions.

In Proceedings, 33rd International Symposium on Lattice Field Theory (Lattice 2015).

🔋 Kurz, A., Liu, T., Marquard, P., and Steinhauser, M. (2014), 🗉 👘 🛓 🛷

Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order.

Phys.Lett., B734:144–147.

Lautrup, B., Peterman, A., and De Rafael, E. (1971). On sixth-order radiative corrections to a(mu)-a(e). *Nuovo Cim.*, A1:238–242.

Pauk, V. and Vanderhaeghen, M. (2014a).

Anomalous magnetic moment of the muon in a dispersive approach. *Phys.Rev.*, D90(11):113012.

Pauk, V. and Vanderhaeghen, M. (2014b).

Two-loop massive scalar three-point function in a dispersive approach.

Prades, J., de Rafael, E., and Vainshtein, A. (2009).

Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment.

The muon magnetic moment and new physics.

Hyperfine Interact., 214(1-3):13–19.