SoLid: Recent Results and Future Prospects

Jonathan Link

Center for Neutrino Physics, Virginia Tech

Aspen Winter Conference on Particle Physics January 16, 2016

The SoLid Experiment

Uses a novel detector technology to

🛄 Virginia Tech

- Search for evidence \overline{v}_e disappearance at shortbaseline, possibly induced by sterile neutrinos,
- Measure the ²³⁵U fission neutrino flux to improve flux predictions, and
- Demonstrate reactor neutrino safeguards for non-proliferation.

The SoLid Experiment

Uses a novel detector technology to

🛄 Virginia Tech

- Search for evidence \overline{v}_e disappearance at shortbaseline, possibly induced by sterile neutrinos,
- Measure the ²³⁵U fission neutrino flux to improve flux predictions, and
- Demonstrate reactor neutrino safeguards for non-proliferation.

Reactor Neutrino Detection and Backgrounds

Reactors antineutrinos (\overline{v}_e) interact via the inverse beta-decay process:

 $\overline{\nu}_e + p \rightarrow e^+ + n$

The positron makes a prompt signal, while the neutron thermalizes and is captured, giving a delayed response.

The coincidence in space and time of the positron and neutron capture helps to reject most radioactive and cosmogenic backgrounds.

Correlated backgrounds include fast neutrons, spallation produced β/n emitters (⁹Li and ⁸He), and random coincidences.

Random coincidences dominate in surface experiments, especially in the radioactive environment close to a running reactor.

Good spatial resolution and high purity neutron detection are essential to reduce this background.

The Novel SoLid Detector Concept

Primary neutrino interactions are detected in 5 cm, optically isolated cubes of plastic scintillator, which are read out by wavelength shifting fibers in two dimensions.

Neutrons are tagged in thin sheets of ⁶Liloaded, silver activated zinc sulfide scintillator: ⁶LiF:ZnS(Ag).

 $^{6}\text{Li} + n \rightarrow ^{4}\text{He} + ^{3}\text{H}$

ZnS(Ag) releases light with a 200 ns mean emission time which forms a very \overline{v}_e ..., pure, high efficiency neutron tag.

The cube segmentation results in unprecedented spatial resolution which is used to significantly reduce random coincident backgrounds.

🌉 Virgi

The Novel SoLid Detector Concept

Jonathan Link

WirginiaTech

Invent the Future

SoLid Detector Development

2013 20x	2014-2015	2016 (Phase I)
20 cm ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	 SoLid Module 1 (SM1) 288kg, 9 detector planes of 16×16 cubes 	• 8 SoLid Modules 2 tons, 11,520 cubes 2592 channels
Proof of Concept1. Demonstrate neutron PID2. Measure Backgrounds3. Measure Coincidence Rate	 Real Scale Systems Test 1. Demonstrate scalability 2. Test Production (schedule & procedures) 3. Demonstrate Power of Segmentation 	Real Scale Systems Test1. Implement Neutron Trigger2.Optimize Production3.Optimize Performance4. Do Initial Oscillation Search
> 40 days Reactor on Data (~3 reactor cycles)	1 week Reactor on Data 2 months Reactor off	Anticipate 1 year of Phase I Data
UirginiaTech	Jonathan Link	Center for Neutring

Invent the Future

VZ/

The BR2 Reactor at SCK•CEN (Mol, Belgiun)

Large available floor space covering baselines of 5.5 to 12 meters.

WirginiaTech

- Compact Source (50 cm effective core diameter)
- High Power (40-80) MW typical operating range)
- Highly Enriched ²³⁵U Core
- 150 days/year Duty Cycle
- Low reactor correlated neutron and gamma rates

SM1 Test Run at BR2

Jonathan Link

Invent the Future

Neutron Identification in SM1

Neutron ID is based on the ratio of signal pulse integral to its amplitude.

Neutron source data confirms a clear separation between neutron and electromagnetic events.

🏢 Virginia Tech

Inverse Beta Decay Analysis

First data processing completed: Data reduction, filtering, calibration and reconstruction

SM1 MC response tuning is ongoing

Study of background events and selection cuts has started

With cube segmentation we expect a signal/background of about 2

Aim for result early this year

Antineutrino IBD Candidate Event

SoLid Run Plan (2016)

Phase I experimental set up

SoLid Run Plan (2017-2020)

Phase II experimental set up

450 Days of Reactor on

CHANDLER R&D Effort

<u>Cube String Studies</u> have been used to study light production, light collection, light attenuation, energy resolution and wavelength shifter concentration.

<u>MicroCHANDLER</u> is a $3 \times 3 \times 3$ prototype which we are using to test our full electronics chain, develop the data acquisition system, study neutron capture identification and measure background rates.

CHANDLER R&D Effort

<u>Cube String Studies</u> have been used to study light production, light collection, light attenuation, energy resolution and wavelength shifter concentration.

<u>MicroCHANDLER</u> is a $3 \times 3 \times 3$ prototype which we are using to test our full electronics chain, develop the data acquisition system, study neutron capture identification and measure background rates.

<u>MiniCHANDLER</u> is a **fully funded** systems test $(8 \times 8 \times 5)$ which is currently under construction and will be deployed at a commercial nuclear power plant. It will be operational winter 2016.

SoLid and CHANDLER Sensitivity

The combined sensitivity for the SoLid/CHANDLER deployment at BR2 is compared to the Gallium and Reactor Anomalies.

The one-year, Phase I SoLid deployment covers most of the low Δm^2 part of the Gallium Anomaly at 95% CL.

Adding CHANDLER to the threeyear Phase II extends the coverage to higher Δm^2 and pushes the reach well into the Reactor Anomaly.

These sensitivities are purely oscillometric, based on energy spectrum and baseline information alone.

Illustration Information Informatio Information Information Information Information Inform

Conclusions

- 1. The SoLid experiment will make a very sensitive search for reactor antineutrino disappearance using a novel compact detector.
- 2. The high spatial resolution and pure neutron tag are designed to significantly reduce background rates.
- 3. The SM1 run was a success and data analysis is progressing. The excellent neutron identification has been demonstrated.
- 4. CHANDLER is an extension of the SoLid concept with significantly improved energy resolution.
- 5. The combined CHANDLER/SoLid run will cover most of the allowed \bar{v}_e disappearance space.

The SoLid Collaboration

Jonathan Link

WirginiaTech

