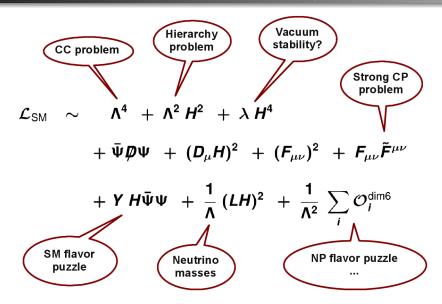
Theoretical Advances in Flavor Physics

Wolfgang Altmannshofer altmanwg@ucmail.uc.edu

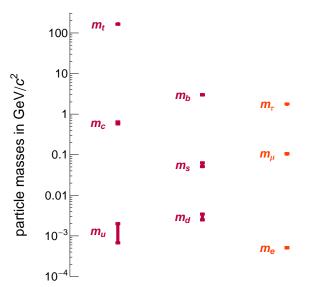
Aspen Winter Conference "Particle Physics on the Verge of Another Discovery?" Aspen, January 11 - 16, 2016

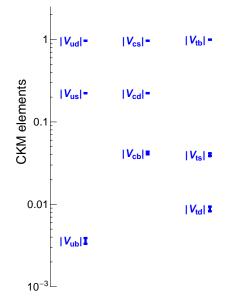

The Standard Model as Effective Theory

$$\mathcal{L}_{SM} \sim \Lambda^4 + \Lambda^2 H^2 + \lambda H^4$$

$$+ \bar{\Psi} \not\!\!\!D \Psi + (D_\mu H)^2 + (F_{\mu\nu})^2 + F_{\mu\nu} \tilde{F}^{\mu\nu}$$

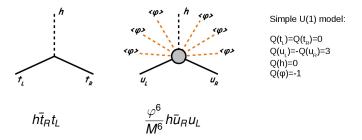
$$+ Y H \bar{\Psi} \Psi + \frac{1}{\Lambda} (LH)^2 + \frac{1}{\Lambda^2} \sum_i \mathcal{O}_i^{\text{dim6}}$$


The Standard Model as Effective Theory



The Standard Model Flavor Puzzle

Flavor Hierarchies


Flavor Hierarchies

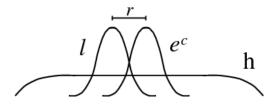
Hierarchy from Symmetry

(Froggatt, Nielsen '79; ...)

fermion masses are forbidden by flavor symmetries and arise only after spontaneous breaking of the symmetry

mass and mixing hierarchies given by powers of the spurion $\langle \varphi
angle / M$

$$\frac{m_u}{m_t} \sim \left(\frac{\langle \varphi \rangle}{M}\right)^n$$

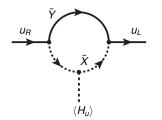

(see recent work by Bauer, Carena, Gemmler '15)

Wolfgang Altmannshofer (UC)

Hierarchy without Symmetry: Geometry

(Arkani-Hamed, Schmaltz '99; Grossman, Neubert '99; ...)

fermions are localized at different positions in an extra dimension


hierarchies from exponentially small wave-function overlap between left-handed and right-handed fermions and the Higgs

$$rac{m_u}{m_t} \sim e^{-\Delta}$$

Hierarchy without Symmetry: Loops

(Weinberg '72; ...)

light fermion masses arise only from quantum effects

light fermions do not couple to the higgs directly

couplings are loop-induced by flavor violating new particles

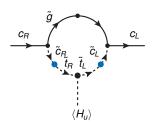
mass and mixing hierarchies from loop factors

$$\frac{m_u}{m_t} \sim \left(\frac{1}{16\pi^2}\right)^n$$

(various studies in recent years:

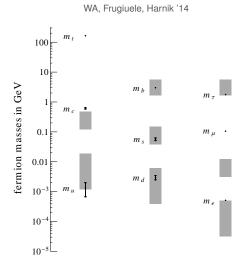
Arkani-Hamed et al. '12; Baumgart, Stolarski, Zorawski '14; WA, Frugiuele, Harnik '14;

Ibarra, Solaguren-Beascoa '14; Joaquim, Penedo '14; ...)

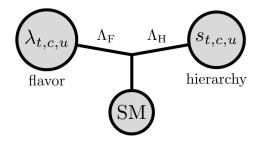

Wolfgang Altmannshofer (UC)

Theoretical Advances in Flavor Physics

Fermion Hierarchy from Sfermion Anarchy


A simple setup for loop induced fermion masses:

- MSSM field content
- ► rank 1 Yukawa couplings
- flavor anarchic sfermion masses


Works remarkably well!

(muon mass can be fixed by adding new gauge interactions)

Disentangeling Mass and Mixing Hierarchies

Knapen, Robinson '15

one sector with scale Λ_F responsible for flavor mixing

 Λ_F is strongly constrained by low energy flavor observables (in some cases at the level of 1000s or 100,000s of TeV) separate sector with scale Λ_H responsible for mass hierarchies

 Λ_H could be much lower, close to the electroweak scale and in reach of the LHC

A Flavorful Higgs

The Flavor of the Higgs

$$\mathcal{L}_{\text{Yukawa}} = Y_{ij} \bar{\Psi}_i \Psi_j H$$

In the Standard Model the Yukawa couplings are the only sources of flavor and CP violation

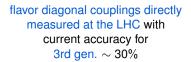
 \rightarrow the couplings of the Higgs to fermion mass eigenstates are flavor diagonal and CP conserving

$$\frac{1}{\nu} \begin{pmatrix} m_{u,d,e} & 0 & 0 \\ 0 & m_{c,s,\mu} & 0 \\ 0 & 0 & m_{t,b,\tau} \end{pmatrix}$$

The Flavor of the Higgs

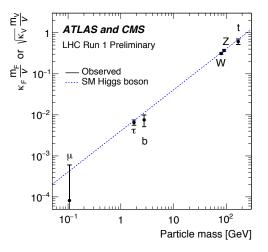
$$\mathcal{L}_{\text{Yukawa}} = Y_{ij} \bar{\Psi}_i \Psi_j H + \frac{Y_{ij}}{\Lambda^2} \bar{\Psi}_i \Psi_j H^3$$

~


In the Standard Model the Yukawa couplings are the only sources of flavor and CP violation

 \rightarrow the couplings of the Higgs to fermion mass eigenstates are flavor diagonal and CP conserving

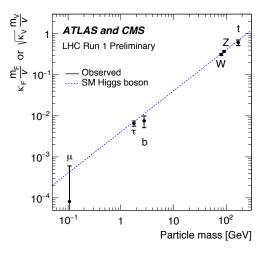
$$\frac{1}{\nu} \begin{pmatrix} m_{u,d,e} & 0 & 0 \\ 0 & m_{c,s,\mu} & 0 \\ 0 & 0 & m_{t,b,\tau} \end{pmatrix} + \frac{\nu^2}{\Lambda^2} \begin{pmatrix} \star & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$


New Physics can modify the flavor diagonal Higgs couplings
 New Physics can lead to flavor and CP violating Higgs couplings

Flavor Diagonal Higgs Couplings

can be improved to: $\sim 5\% - 10\%$ at a HL-LHC few % at a ILC

we know that the Higgs provides (at least part of) the mass of the 3rd gen.


Flavor Diagonal Higgs Couplings

flavor diagonal couplings directly measured at the LHC with current accuracy for 3rd gen. $\sim 30\%$

can be improved to: $\sim 5\% - 10\%$ at a HL-LHC few % at a ILC

we know that the Higgs provides (at least part of) the mass of the 3rd gen.

What about the 1st and 2nd generation?

Higgs Coupling to Electrons

$$\left(\frac{m_e}{v} + \tilde{Y}_{ee} \frac{v^2}{\Lambda^2}\right) h\bar{e}e = \frac{m_e}{v} \kappa_e h\bar{e}e \qquad (\kappa_e^{\rm SM} = 1)$$

	LHC8 $(25/fb)$	$ \kappa_e \lesssim 600$	$M\gtrsim 6~{\rm TeV}$
$h \to e^+ e^-$	LHC14 $(300/fb)$	$ \kappa_e \sim 260$	$M\sim9~{\rm TeV}$
	LHC14 $(3/ab)$	$ \kappa_e \sim 150$	$M\sim 12~{\rm TeV}$
$e^+e^- ightarrow h$	$100~{\rm TeV}~(3/{\rm ab})$	$ \kappa_e \sim 75$	$M\sim 17~{\rm TeV}$
	LEP II	$ \kappa_e \lesssim 2000$	$M\gtrsim 3~{ m TeV}$
	TLEP $(1/fb)$	$ \kappa_e \sim 50$	$M\sim 20~{\rm TeV}$
d_e	TLEP $(100/fb)$	$ \kappa_e \sim 10$	$M\sim 50~{\rm TeV}$
	current	$\mathrm{Im}\kappa_e \lesssim 0.017$	$M\gtrsim 1000~{\rm TeV}$
u_e	future	${\rm Im}\kappa_e\sim 0.0001$	$M\sim 10^4~{\rm TeV}$
$(g-2)_{e}$	current	$\operatorname{Re}\kappa_e \lesssim 3000$	$M\gtrsim 2.5~{\rm TeV}$
(9 2)e	future	$\operatorname{Re}\kappa_e\sim 300$	$M\sim 8~{\rm TeV}$

WA, Brod, Schmaltz, 1503.04830

Sequestered Fermion Mass Generation

What if the SM Higgs gives mass only to the 3rd generation?

 $\mathcal{M} = \mathcal{M}_0$

$${\cal M}_0 \sim egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & m_ au \end{pmatrix} ~,$$

(WA, Gori, Kagan, Silvestrini, Zupan '15; Ghosh, Perez '15)

Sequestered Fermion Mass Generation

What if the SM Higgs gives mass only to the 3rd generation?

 $\mathcal{M} = \mathcal{M}_0 + \Delta \mathcal{M}$

$$\mathcal{M}_0 \sim egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & m_ au \end{pmatrix} \ , \quad \Delta \mathcal{M} \sim egin{pmatrix} m_e & m_e & m_e \ m_e & m_\mu & m_\mu \ m_e & m_\mu & m_\mu \end{pmatrix}$$

△*M* could be due to a second source of electroweak symmetry breaking, e.g. a second Higgs, strong dynamics, ...

(WA, Gori, Kagan, Silvestrini, Zupan '15; Ghosh, Perez '15)

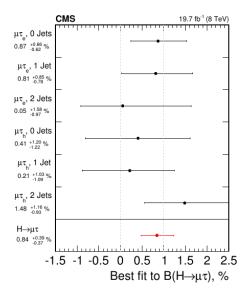
Generic Expectations for the 125 GeV Higgs

Sequestered mass generation for leptons

 $\begin{array}{ll} \mathsf{BR}(h \to \tau \tau) \sim & \mathsf{SM}\text{-like} \\ \mathsf{BR}(h \to \mu \mu) \sim & \mathsf{typically suppressed} \\ \mathsf{BR}(h \to \tau \mu) \sim & \frac{m_{\mu}^2}{m_{\tau}^2} \times \mathsf{BR}(h \to \tau \tau) \sim 10^{-3} \\ \mathsf{BR}(h \to \tau e) \sim & \frac{m_e^2}{m_{\mu}^2} \times \mathsf{BR}(h \to \tau \mu) \sim 10^{-7} \end{array}$

Generic Expectations for the 125 GeV Higgs

Sequestered mass generation for leptons


 $\begin{array}{ll} \mathsf{BR}(h \to \tau \tau) \sim & \mathsf{SM}\text{-like} \\ \mathsf{BR}(h \to \mu \mu) \sim & \mathsf{typically suppressed} \\ \mathsf{BR}(h \to \tau \mu) \sim & \frac{m_{\mu}^2}{m_{\tau}^2} \times \mathsf{BR}(h \to \tau \tau) \sim 10^{-3} \\ \mathsf{BR}(h \to \tau e) \sim & \frac{m_e^2}{m_{\mu}^2} \times \mathsf{BR}(h \to \tau \mu) \sim 10^{-7} \end{array}$

Sequestered mass generation for quarks

 $\begin{array}{l} \mathsf{BR}(t \to ch) \ \text{could be as large as} \ \sim |V_{cb}|^2 \sim 10^{-3} \\ \\ \mathsf{BR}(t \to uh) \ \text{could be as large as} \ \sim |V_{ub}|^2 \sim 10^{-5} \end{array}$

 $BR(B_s \rightarrow \tau \mu)$ could be as large as $\sim 10^{-7}$

A Hint for Higgs Flavor Violation?

$$B(h \rightarrow \tau \mu) = (0.84^{+0.39}_{-0.37})\%$$

CMS 1502.07400

compatible with the generic expectation of "sequestered" fermion masses (a bit on the high side, though ...)

Flavor Anomalies

(see also talk by Andreas Crivellin)

 \sim 3.5 σ $(g-2)_{\mu}$ anomaly

- \sim 3.5 σ (g 2) $_{\mu}$ anomaly
- $\sim 3.5\sigma$ non-standard like-sign dimuon charge asymmetry

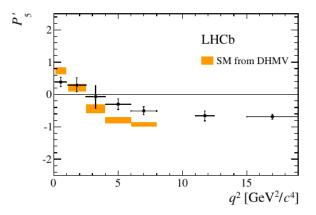
- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- $\sim 3.5\sigma$ non-standard like-sign dimuon charge asymmetry
- \sim 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates

- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- \sim 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s
 ightarrow \phi \mu^+ \mu^-$

- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- $\sim 3.5\sigma$ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s
 ightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$

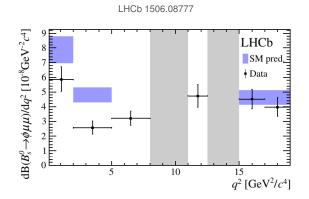
- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- \sim 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$

- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- $\sim 3.5\sigma$ non-standard like-sign dimuon charge asymmetry
- \sim 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2-3\sigma$ anomaly in $B
 ightarrow K^* \mu^+ \mu^-$ angular distributions

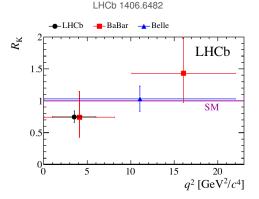

- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- \sim 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2-3\sigma$ anomaly in $B \rightarrow K^* \mu^+ \mu^-$ angular distributions
- $2 3\sigma$ SM prediction for ϵ'/ϵ below experimental result

- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- \sim 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s
 ightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2-3\sigma$ anomaly in $B \rightarrow K^* \mu^+ \mu^-$ angular distributions
- $2 3\sigma$ SM prediction for ϵ'/ϵ below experimental result
- $\sim 2.5\sigma$ lepton flavor non-universality in $B \to K \mu^+ \mu^-$ vs. $B \to K e^+ e^-$

- \sim 3.5 σ (g 2) $_{\mu}$ anomaly
- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- \sim 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s
 ightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2-3\sigma$ anomaly in $B \rightarrow K^* \mu^+ \mu^-$ angular distributions
- $2 3\sigma$ SM prediction for ϵ'/ϵ below experimental result
- $\sim 2.5\sigma$ lepton flavor non-universality in $B \to K \mu^+ \mu^-$ vs. $B \to K e^+ e^-$
- \sim 2.5 σ non-zero $h \rightarrow \tau \mu$


"The $B ightarrow K^* \mu^+ \mu^-$ Anomaly"

LHCb 1512.04442


2.8 σ deviation in [4,6] GeV² bin (+3.0 σ in [6,8] GeV² bin)

"The $B_s \rightarrow \phi \mu^+ \mu^-$ Anomaly"

branching ratio is 3.5σ below SM prediction for $1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$

"The R_K Anomaly"

2.6 σ hint for violation of lepton flavor universality (LFU)

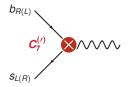
$$R_{K} = rac{\mathsf{BR}(B o K\mu^{+}\mu^{-})_{[1,6]}}{\mathsf{BR}(B o Ke^{+}e^{-})_{[1,6]}} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

branching ratios	angular observables	LFU ratios

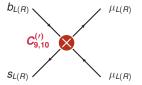
	branching ratios	angular observables	LFU ratios
millisecond pulsars?	?	?	?

	branching ratios	angular observables	LFU ratios
millisecond pulsars?	?	?	?
statistical fluctuations?	\checkmark	\checkmark	\checkmark

	branching ratios	angular observables	LFU ratios
millisecond pulsars?	?	?	?
statistical fluctuations?	\checkmark	\checkmark	\checkmark
parametric uncertainties?	\checkmark	×	×


branching ratios	angular observables	LFU ratios
?	?	?
\checkmark	\checkmark	\checkmark
\checkmark	×	×
\checkmark	\checkmark	×
	, v	ratios observables ???

	branching ratios	angular observables	LFU ratios
millisecond pulsars?	?	?	?
statistical fluctuations?	\checkmark	\checkmark	\checkmark
parametric uncertainties?	\checkmark	×	X
underestimated hadronic effects?	\checkmark	\checkmark	X
New Physics?	\checkmark	\checkmark	\checkmark


New Physics in $b \rightarrow s$ Decays

$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

magnetic dipole operators

semileptonic operators

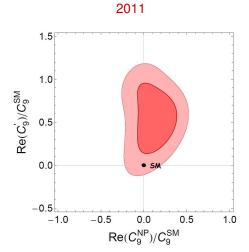
	C_7, C_7'	C_9, C_9'	C_{10}, C_{10}'
$B ightarrow (X_{\mathcal{S}}, K^*) \gamma$	*		
$B ightarrow (X_{s},K,K^{*}) \ \mu^{+}\mu^{-}$	*	*	*
$B_{S} ightarrow \phi \; \mu^+ \mu^-$	*	*	*
$B_{ m s} ightarrow \mu^+ \mu^-$			*

neglecting tensor operators (secretly dimension 8) neglecting scalar operators

(strongly constrained by

$$B_s \rightarrow \mu^+ \mu^-$$
)

many processes and many observables are modified simultaneously


\Rightarrow global fits are required

WA, Straub, Paradisi '11; Bobeth, Hiller, van Dyk, Wacker '11; WA, Straub '12 - '15;
Beaujean, Bobeth, van Dyk, Wacker; '12; Descotes-Genon, Matias, Virto '13, '14;
Beaujean, Bobeth, van Dyk '13; Hurth, Mahmoudi '13; Ghosh, Nardecchia, Renner '14;
Hurth, Mahmoudi, Neshatpour '14; Jäger, Martin Camalich '14;
Beaujean, Bobeth, Jahn '15; Descotes-Genon, Hofer, Matias, Virto '15;
Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli '15; ...

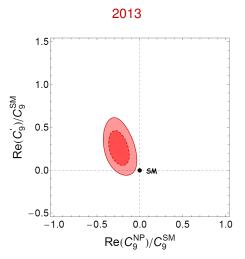
favored new physics parameter space

(WA, Straub '11 - '15)


 $O_9 \propto (\bar{s}\gamma_\mu P_L b)(\bar{\mu}\gamma^\mu\mu)$ $O'_9 \propto (\bar{s}\gamma_\mu P_R b)(\bar{\mu}\gamma^\mu\mu)$

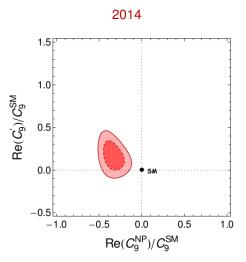
favored new physics parameter space

(WA, Straub '11 - '15)

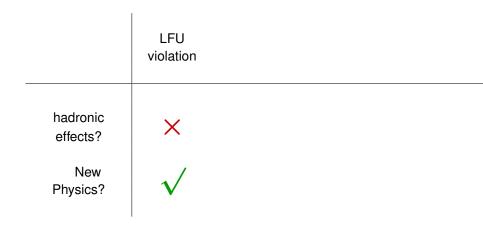

 $O_9 \propto (\bar{s}\gamma_\mu P_L b)(\bar{\mu}\gamma^\mu\mu)$ $O'_9 \propto (\bar{s}\gamma_\mu P_R b)(\bar{\mu}\gamma^\mu\mu)$

favored new physics parameter space

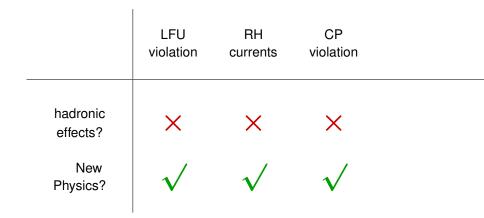
(WA, Straub '11 - '15)

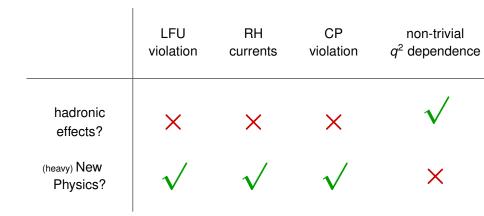

 $O_9 \propto (\bar{s}\gamma_\mu P_L b)(\bar{\mu}\gamma^\mu\mu)$ $O'_9 \propto (\bar{s}\gamma_\mu P_R b)(\bar{\mu}\gamma^\mu\mu)$

favored new physics parameter space

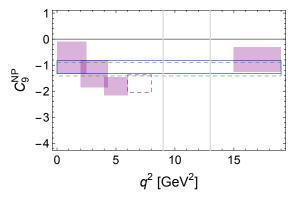

(WA, Straub '11 - '15)

 $O_9 \propto (\bar{s}\gamma_{\mu}P_Lb)(\bar{\mu}\gamma^{\mu}\mu)$ $O'_9 \propto (\bar{s}\gamma_{\mu}P_Bb)(\bar{\mu}\gamma^{\mu}\mu)$




favored new physics parameter space 2015 (WA. Straub '11 - '15) 1.5 1.0 $O_9 \propto (\bar{s}\gamma_\mu P_I b)(\bar{\mu}\gamma^\mu\mu)$ $\operatorname{Re}(C_9)/C_9^{SM}$ $O'_{9} \propto (\bar{s}\gamma_{\mu}P_{B}b)(\bar{\mu}\gamma^{\mu}\mu)$ 0.5 muonic vector current 0.0 $\blacktriangleright \Delta \chi^2 = 15.2$ ▶ p-value: 12.4% -0.5-0.5(2.1% in the SM) -1.00.0 0.5 1.0 $\operatorname{Re}(C_{0}^{\operatorname{NP}})/C_{0}^{\operatorname{SM}}$

(only $b \rightarrow s \mu^+ \mu^-$ data)



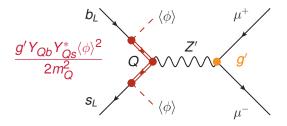
q^2 Dependence of the Effect

compatible with a q^2 independent short distance contribution from new physics

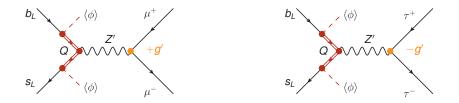
preferred value for C_9 seems to increase closer to the J/ψ \rightarrow indication for a charm loop effect?

Implications for the New Physics Scale

generic tree
$$\frac{1}{\Lambda_{NP}^2} (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$$
 $\Lambda_{NP} \simeq 35 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{tb} V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 7 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 3 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} V_{tb} V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 0.6 \text{ TeV} \times (C_9^{NP})^{-1/2}$


(assumes New Physics has O(1) coupling to muons)

Wolfgang Altmannshofer (UC)


My Favorite Model

Z' based on gauging $L_{\mu} - L_{\tau}$ with effective flavor violating couplings to quarks

WA, Gori, Pospelov, Yavin 1403.1269

$L_{\mu} - L_{\tau}$ and Lepton Flavor Universality

the Z' model based on gauged $L_{\mu} - L_{\tau}$ predicts:

1) opposite effects in the $\mu^+\mu^-$ and $\tau^+\tau^-$ final state 2) no effect in the e^+e^- final state ratios of branching ratios

$$R_{K} = \frac{\mathsf{BR}(B \to K\mu\mu)}{\mathsf{BR}(B \to Kee)}$$
$$R_{K^{*}} = \frac{\mathsf{BR}(B \to K^{*}\mu\mu)}{\mathsf{BR}(B \to K^{*}ee)}$$
$$R_{\phi} = \frac{\mathsf{BR}(B_{s} \to \phi\mu\mu)}{\mathsf{BR}(B_{s} \to \phiee)}$$

$$R_i^{\rm SM}\simeq 1$$

...

ratios of branching ratios

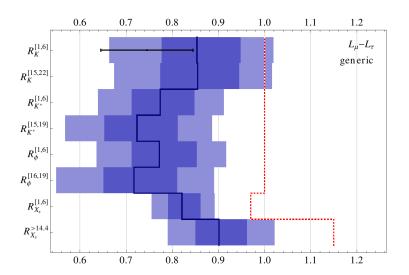
differences of angular observables

$$R_{K} = \frac{\mathsf{BR}(B \to K\mu\mu)}{\mathsf{BR}(B \to Kee)}$$
$$R_{K^{*}} = \frac{\mathsf{BR}(B \to K^{*}\mu\mu)}{\mathsf{BR}(B \to K^{*}ee)}$$
$$R_{\phi} = \frac{\mathsf{BR}(B_{s} \to \phi\mu\mu)}{\mathsf{BR}(B_{s} \to \phiee)}$$

$${\it D}_{{\it P}_5^\prime}={\it P}_5^\prime({\it B}
ightarrow{\it K}^*\mu\mu)-{\it P}_5^\prime({\it B}
ightarrow{\it K}^*{\it ee})$$

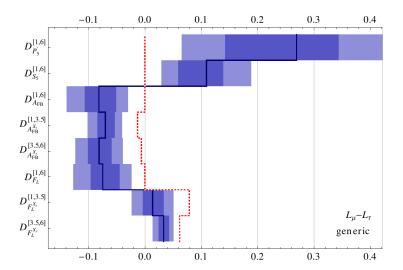
$$\mathcal{D}_{\mathcal{A}_{\mathsf{FB}}} = \mathcal{A}_{\mathsf{FB}}(\mathcal{B} o \mathcal{K}^* \mu \mu) - \mathcal{A}_{\mathsf{FB}}(\mathcal{B} o \mathcal{K}^* ee)$$

$$D_{F_L} = F_L(B
ightarrow K^* \mu \mu) - F_L(B
ightarrow K^* ee)$$


$$R_i^{\rm SM} \simeq 1$$

...

 $D_i^{\rm SM}\simeq 0$

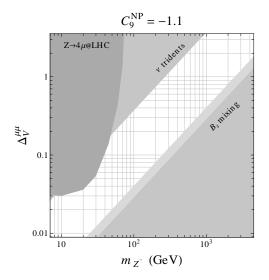

...

Predictions for LFU Observables

WA, Yavin '15

Predictions for LFU Observables

WA, Yavin '15


Conclusions

 the origin of the hierarchical flavor structure of the SM fermions remains mysterious

- it is crucial to verify that the Higgs provides mass to all 3 generations and to investigate alternative setups
- ► various experimental results in flavor physics show ~ 3σ discrepancies with the Standard Model predictions
- statistical fluctuations? hadronic effects? New Physics?
- looking forward to an exciting future with new data from LHC(b) and Belle II

Back Up

Allowed Z' Parameter Space

