Physics at Future Neutrino Facilities

Jelena Maricic University of Hawaii at Manoa Aspen Winter Conference on Particle Physics January 15, 2016

Outline

- Physics at Long-Baseline Neutrino Facility (LBNF) with DUNE
- Cross-sectional neutrino measurements at FNAL: CAPTAIN-MINERVA
- Short Baseline Neutrino (SBN) program at Fermilab
- Physics at J-PARC facilities with HyperK experiment (Japan)
- Physics at J-PARC facilities with T2K extended (Japan)
- Bringing accelerators to detectors and physics prospects: "compact" high power proton cyclotrons for DAEδalus and IsoDAR.
- Neutrino Factory, MOMENT for high precision CPV phase measurements
- Summary and outlook

Future Neutrino Facilities Support

Comprehensive Science Program

- Remarkable opportunities for major scientific discoveries:
 - Leptonic CP violation phase measurement
 - Determination of neutrino mass hierarchy
 - Proton decay
 - Detection of galactic-core supernovae neutrinos
 - Searches for sterile neutrinos
- Many other important topics:
 - Neutrino beam physics:
 - Determination of the θ_{23} octant
 - Precision measurement of neutrino oscillation parameters
 - Precision tests of 3 flavor neutrino model
 - Tests of neutrino NSI (Non-Standard Interactions)
 - Interaction cross-section measurements
 - Synergic scientific program in precision neutrino and weak interactions physics

Long Baseline Neutrino Facility (LBNF) and DUNE

Completing The Three Neutrino Mixing Model

Physics at Future Neutrino Facilities, J. Maricic

DUNE and

LBNF

Deep Underground Neutrino Experiment (DUNE) consists of:

- 4 LAr TPC (Time Projection Chamber) detectors at SURF with 40 kton (fiducial) LAr TPC at 4850 ft depth
- Near Detector complex
- International science collaboration

LBNF will provide **wide-band neutrino beam** to DUNE. Unprecedented beam power up to date

1.2 MW (2026) \rightarrow 2.4 MW (II phase)

Send ν_{μ} beam from Fermi Lab (FNAL) to Far Detector (FD) 1300 km away at SURF.

Run in both ν and anti- ν mode. DUNE will detect disappearance of ν_{μ} and appearance of ν_{e} at FD to fulfill science goals.

LBNF IS MORE THAN JUST A BEAM

- What does it take for LBNF to support DUNE's elaborate program?
 - Major partners: FNAL, CERN and SURF
 - Construction and maintenance of underground and surface facilities at SURF, capable of hosting a 4-module LAr TPCs with over 70 kton LAr.
 - Cryostats, refrigeration and purification systems to operate the detectors
 - A high-power, wide-band, tunable, neutrino beam at FNAL
 - Underground and surface facilities at FNAL hosting near detector and potentially other neutrino experiments

LBNF Hosting Far Detector at SUR

- First 10 kton module single phase LAr TPC (follow previously developed concept design for LBNE).
- Built-in flexibility to accommodate all detector needs, independent of design.
- Follow-up modules may be single or dual phase, depending on performance of large scale single and dual phase prototypes.
- Both single and dual phase prototypes will be tested at CERN ~2018.

Near detector

- Monitors initial neutrino beam
- Fine grain tracker magnetized neutrino detector (design based on success of NOMAD and T₂K ND).
- Includes muon detectors in absorber hall.
- ND design will undergo detailed analysis and optimization LAr TPC or high pressure gaseous Ar TPC may be added for direct comparison with FD.

Toward the world most intense neutrino be

Fermilab Accelerator Complex

Proton Improvement Plan PIP

Fermilab Accelerator Complex

997 ft [304 m]

Near Detector

Hall

Not to Scale

Enclosure

The LBNF Beamline

Well developed conceptual design relies on upgraded tunable NUMI focusing

LBNF: Preparing for 2.4 MW bean

- Expensive systems already designed for 2.4 MW, as later replacements are prohibitively expensive:
 - Size of enclosures (primary proton beamline, target chase, target hall, decay pipe, absorber hall)
 - Radiological shielding of enclosures
 - Primary Beamline components
 - Target chase cooling panels
 - Decay pipe and its cooling
 - Beam absorber
 - Remote handling equipment
 - Radioactive water piping
 - Horn support structures designed to last for a lifetime of the facility
 - New horn design and target needed; subject to R&D.

Optimizing the Focusing System

- Based on genetic algorithm developed for LBNO.
- Vary: proton energy 60-120 GeV, horn shape/size/current/position, target size/shape/position/materials, decay pipe length/diameter.

Neutrino spectra in DUNE

Long baseline: Matter effects are large ~ 40%

Wide-band beam: Measure v_e appearance and v_{μ} disappearance over range of energies MH & CPV effects are separable

DUNE: normalization uncertainties

- Fit to $v_e, \overline{v}_e, v_\mu, \overline{v}_\mu$ powerful
 - Near detector constrains flux
- Estimation of systematics:
 - Oscillation parameters:
 - Constrain from DUNE data
 - Flux:
 - Normalization and shape
 - Cross sections: $v_e, \overline{v}_e, v_{\mu}, \overline{v}_{\mu}$
 - Nuclear effects:
 - Initial and final state effects
 - Detector response:
 - Energy reconstruction

Source of	MINOS	T2K	DUNE
Uncertainty	$ u_e$	$ u_e$	$ u_e$
Beam Flux	0.3%	3.2%	2%
after N/F			
extrapolation			
Interaction	2.7%	5.3%	$\sim 2\%$
Model			
Energy scale	3.5%	included	(2%)
(u_{μ})		above	
Energy scale	2.7%	2.5%	2%
(u_e)		includes	
		all FD	
		effects	
Fiducial	2.4%	1%	1%
volume			
Total	5.7%	6.8%	3.6 %
Used in DUNE			$5\% \oplus 2\%$
Sensitivity			
Calculations			

DUNE: CPV and MH sensitivity

Proton Decay Sensitivity

 $\mathbf{p} \rightarrow \mathbf{K} \mathbf{v}$ DUNE for various staging assumptions

Super-nova neutrino detection

- About 99% of the gravitational binding energy of the proto-neutron star gravitation into neutrinos.
- Expect 2-3 core-collapse supernovae in the Milky Way per century \approx 3500 neutrinos in 40kt DUNE for SN@10 kpc Unique sensitivity through $\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

Sanford

Complex relation between neutrino dynamics in supernovae and detector observables – affected by self-interaction, oscillations and mass.

Major effort underway to understand the model dependences.

ricic, University of Hawaii

LBNF/DUNE Schedule Summary Overview

Physics at Future Neutrino Facilities, J. Maricic

CAPTAIN – MINERVA in NuMI Beam at FNAL

Precisely Measuring Neutrino Interaction Cross-sections

Physics at Future Neutrino Facilities, J. Maricic

CAPTAIN-MINERVA

- 5 T, LAr TPC in front of MINERvA
 - In NuMI beam: 2 < *E* < 10 GeV
 - Powerful magnetic detector
- Measurement program:
 - Cross sections:
 - Cross-section ratio: Ar to C
 - Allows constraint of models
 - Particle Id and event reconstruction
 - 2-year run gives substantial samples
- Gained Stage I approval in 2015
- Start 2017

	Events w/	Events w/
	reco μ	reco μ and charge
CCQE-like	916k	784k
$CC1\pi^{\pm}$	1953k	966k
$CC1\pi^0$	1553k	597k

Short Baseline Neutrino (SBN) program at FNAL

Sterile Neutrino Investigation

Physics at Future Neutrino Facilities, J. Maricic

- Exploit L, E and L/E modulation; detectors at three baselines
- Appearance, $v_{\mu} \rightarrow v_{e}$, *and*, disappearance, $v_{e} \rightarrow v_{X}$
 - Exploit 3 LAr detectors; minimise inter-detector systematics
- Robustly address backgrounds and uncertainties:
 - ν_e contamination in FNAL Booster Neutrino Beam,...

SBN sensitivity

- Region of interest can be addressed at 5σ
- Run start in 2018 hysics at Future Neutrino Facilities, J. Maricic

Physics at Japan Proton Accelerator Research Complex J-PARC with HyperK and T2K-extended

Completing the three neutrino standard model

J-PARC for T2K and HyperK

Tokai to Hyper-Kamiokande F. Di Lodovico, Future Nu in J WS

Use upgraded J-PARC neutrino beam line (same as T2K) with expected beam power 750kW, 2.5° off-axis angle.

Hyper-Kamiokande

J-PARC Main Ring Neutrino Beamline (KEK-JAEA)

Near Detectors

T. Sekiguchi (KEK) on behalf of T2K Beam Group

- Narrow-band beam at ~600MeV at 2.5° off-axis
- •Take advantage of Lorentz Boost and 2-body kinematics in $\pi^{\scriptscriptstyle +} \rightarrow ~\mu^{\scriptscriptstyle +} \, \nu_{_{II}}$
- PhySicure une beam withes, 1% oct anination

Hyper-Kamiokande

- Next-generation gigantic multi-purpose detector
 - Water Cherenkov technology
 - 560kt fiducial mass
 - 20% photo-coverage with 99k 20-inch PMTs
- Physics
 - Neutrino oscillation
 - Accelerator based LBL
 - Atmospheric nu
 - Solar nu
 - ••
 - Proton decay
 - Astrophysics neutrinos
 - Supernova, SRN, dark matter, etc

Physics at Future Neutrino Facilities, J. Maricic

31

Beamline

J-PARC High Intensity Neutrino Beam

T. Sekiguchi (KEK) on behalf of T2K Beam Group

Design Philosophy of Neutrino Beamline

- Tolerance for high power beam
 - All beamline components designed for 750 kW beam
 Equipments that cannot be replaceable after irradiation are designed for 3 or 4 MW beam.
- **Remote maintenance**
 - Secondary beamline equipments are highly irradiated with more than 1 Sv/h.
 - Beamline components inside Target Station can be replaceable remotely.

10 Year Term Plan of Beam Power Improvement

Design beam power = 750 kW

- \cdot ~ Will be achieved in 2018 ~
- · Beam power over 750 kW is recently being considered.

Aim for 1.3 MW beam by 2026

- Proton intensity = 3.2×10^{14} protons/pulse.
- Repetition cycle = 1.16 sec. with new MR power supplies.

Can our beamline accommodate to 1.3 MW beam?

of protons/pulse **Beam Power Rep.** rate est set 350 kW (achieved) 1.8×10^{1} **1S** 750 kW (proposed) 2.0×10^{14} 1.30 sec. [3.3×10¹⁴] [2.10 sec.] [original plan] 3.2×10^{14} 1.3 MW (proposed) 1.16 sec.

Prospect for Hardware Upgrade

· Cooling capacity

- Apparatuses themselves can withstand 1.3 MW beam.
- Improvement of flow rate both for water and helium circulations is needed.
 - Replacement with larger pumps
 - Replacement with larger-size plumbing
 - $\cdot \implies$ These will be feasible but need 1 year for modification.

Radiation

- Radioactive air
 - Reinforcement of air-tightness \Rightarrow 1.3 MW can be manageable.
- Radioactive water disposal
 - · Enlargement of dilution tank
 - Modification of existing tank $\Rightarrow \sim 1.3 \text{MW}$
 - New facility building for water disposal $\Rightarrow 2MW$
 - \cdot 2 years for construction (no beam stop needed)

Horn Operation Improvement

Operation status

- 250 kA operation for physics data taking since 2010.
 - Mainly due to refurbishment of old K2K PS (rated 250 kA).
- Currently, operated with 2.48 s cycle.

5.4 kV @ 250 kA

• 1.3 s for 750 kW (not operated with the existing PS)

$\cdot~$ 3 PS configuration for 320 kA and 1 Hz operation

- + New power supply developed (2 PS's already produced).
- $\cdot\,$ Also, low impedance striplines newly developed.
- Timeline
- · Production of the last PS, transformers, part of striplines

Summer 2017~

5.6 kV @ 320 kA

A peration from summer 2017.

Physics at Future Neutrino Facilitics, J. Marice

In the Meantime – T2K extended

T2K - Extended

- Neutrino community initiated work to propose "extended T2K"

- Interconnect "desert" between T2K/NOVA and DUNE/HK era

 Make full use of present existing facilities with modest upgrades J-PARC MR upgrade → possibility up to ~1.3MW operation
 ~2e²² pot by around 2026 before HK/DUNE start operating

- Another ~50% increase of effective statistics by
 - 1) Horn current 250kA \rightarrow 320kA
 - 2) analysis improvements

GOALS for T₂K extended:

- Extract best possible/most precise physics outputs
- Provide learning ground for next generation experiment
- Realize >1 MW high power stable beam operation (acc/beamline)
- Systematic errors down to a few %

T. Sekiguchi (KEK) on behalf of T2K Beam Group

Compact Cyclotrons for Precision Neutrino Measurements

Bringing accelerators to detectors

Physics at Future Neutrino Facilities, J. Maricic

STUDESTICOTOTICE

DAE&DALUS High Power (~1 MW) 800 MeV Cyclotron System

M. Shaevitz

IsoDAR – very short baseline

search for sterile neutrinos

 $\sim 16 \text{ m}$

M. Shaevitz

Where Can IsoDAR Run?

JUNO Liquid Scintillator 20 kt Acrylic sphere : \$44, 55 sphere : \$47.5

SNO+

LENA

WATCHMAN

KamLAND

1 kton liquid scintillator

Borexino

1 kton Gd-doped water Cerenkov

M. Shaevitz

IsoDAR \overline{v}_{e} Disappearance Oscillation Sensitivity (3+1)

 \Rightarrow Global fit region can be ruled out at > 5 σ in 4 months of running!

M. Shaevitz

IsoDAR's high statistics and good L/E resolution has potential to distinguish (3+1) and (3+2) oscillation models

δ_{CP} Sensitivity Compared to Others

Neutrino Factory Power: precision measurement of CPV phase and non-leading order effects

NuMAX - Neutrino Factory+, MOMENT

Physics at Future Neutrino Facilities, J. Maricic

Neutrino Factory IDS-NF

This is green-field design Site specific: NuMAX @ Fermilab

$$\mu^{+} \rightarrow e^{+} \overline{\nu}_{\mu} \ \nu_{e}$$
$$\mu^{-} \rightarrow e^{-} \nu_{\mu} \ \overline{\nu}_{e}$$

- Precisely known flux & composition
 - v flux derived from instrumentation in D.R.
 - Many factors driving uncertainties in conventional v beams, no longer relevant
 - Secondary particle production
 - Particle types, flux and energy distribution
 - Proton beam targeting stability
 - Target/horn stability
- Flux not dependent on desired v energy
 - Small losses due to acceleration
 - Impossible now or ever with conventional v beam
- Interestingly, NF can now be considered "technology-ready"
 - MERIT, MuCool, MICE, EMMA

Alan Bross | NuFact15 Centro Brasileiro de Pesquisas Físicas

Oscillation channels at the NF

$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e \nu_\mu$		
$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	$ u_{\mu} \rightarrow \nu_{\mu} $	disappearance	
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\nu_{\mu} \rightarrow \nu_{e}$	appearance (challenging)	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$	$ u_{\mu} \rightarrow \nu_{\tau} $	appearance (atm. oscillation)	
$\nu_e \rightarrow \nu_e$	$\bar{\nu}_e \to \bar{\nu}_e$	disappearance	
$\nu_e \rightarrow \nu_\mu$	$\bar{\nu}_e \to \bar{\nu}_\mu$	appearance: "golden" channel	
$ u_e \rightarrow u_{ au}$	$\bar{\nu}_e \to \bar{\nu}_\tau$	appearance: "silver" channel	

12 channels accessible if E_v is above the τ threshold

August 11, 2015

Alan Bross | NuFact15 Centro Brasileiro de Pesquisas Físicas

Precision on Delta Phase

1.0

•0.8

Efficiency -0.0

0.2

5

 $\Delta\delta$ at 1σ

50

 $\theta_{23}=40^{\circ}$

- Neutrinos from muon decay
- Proton LINAC for ADS ~15 MW
- Energy: 300 MeV/150 km
- Phys. Rev. STAB 17, 090101 (2014)

Neutrinos after the target/ collection/decay similar to NuFact: ~ 10^{21} v/year

Summary

- Future of the neutrino physics looks bright thanks to excellent progress of future neutrino facilities
- Measurement of CPV, MH, sterile neutrino searches, astrophysical nu's, precision oscillation physics and NSI are finally within reach
- Well defined, viable **plans and funding** in place toward MW beams at LBNF and J-PARC by 2026 toward exciting measurements to complete our understanding of 3-nu standard mixing model
- Neutrino Factories (NuMAX, IDS-NF), MOMENT will provide powerful beams needed for precision measurements of CPV phase and non-leading order effects beyond LBNF and J-PARC era
- Cyclotrons development provides promising complementarity for increased science impact for sterile neutrinos and CPV phase measurement, driven by the needs of the medical field.

Thank you!

Physics at Future Neutrino Facilities, J. Maricic