Theoretical Advances in Jet Substructure

Jesse Thaler

Phi

Aspen Winter Conference — January 15, 2016

Diboson Excitement in 2015

More Excitement in 2016?

Bumps may come and go, but jet substructure techniques are here to stay

Substructure from First Principles

zg: Testing the Foundations of QCD

D₂: The Power of Power Counting

Substructure from First Principles

zg: Testing the Foundations of QCD

D₂: The Power of Power Counting

Key Substructure Techniques

Jet Cleaning: e.g. ISR/UE/pileup

[Mass Drop/Filtering, Trimming, Pruning, Soft Drop, Jet Reclustering...; for pileup: Area Subtraction, Jet Cleansing, SoftKiller, PUPPI, Constituent Subtraction...]

Baseline W/Z-Tagging

[using Ellis, Vermilion, Walsh, 0903.5081, 0912.0033]

[p_T Balance, Y-splitter, Angularities, Planar Flow, N-subjettiness, Angular Structure Functions, Jet Charge, Jet Pull, Energy Correlation Functions, Dipolarity, p_T^D, Zernike Coefficients, Fox-Wolfram Moments, JHU/CMSTopTagger, HEPTopTagger, Template Method, Shower Deconstruction, Subjet Counting, Wavelets, Q-Jets, Telescoping Jets...]

[using JDT, Van Tilburg, 1011.2268, 1108.2701]

Substructure from First Principles?

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

Substructure from First Principles?

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

[[]Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Recent Analytic Progress

I-prong substructure:

Jet mass: Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky, 1207.1640; Chien, Kelley, Schwartz, Zhu, 1208.0010; Jouttenus, Stewart, Tackmann, Waalewijn, 1302.0846 Jet shapes: Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014; Banfi, Dasgupta, Khelifa-Kerfa, Marzani, 1004.3483; Li, Li, Yuan, 1107.4535; Larkoski, Neill, JDT, 1401.2158; Hornig, Makris, Mehen, 1601.01319 Angular scaling: Jankowiak, Larkoski, 1201.2688; Larkoski, 1207.1437 Quarks vs. gluons: Larkoski, Salam, JDT, 1305.0007; Larkoski, JDT, Waalewijn, 1408.3122; Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, Webber, 1501.04794 QCD grooming: Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Dasgupta, Fregoso, Marzani, Powling, 1307.0013; Larkoski, Marzani, Soyez, JDT, 1402.2657 Double differential: Larkoski, JDT, 1307.1699; Larkoski, Moult, Neill, 1401.4458; Procura, Waalewijn, Zeune, 1410.6483 In heavy ions: Chien, Vitev, 1405.4293; Chien, 1411.0741 pT balance: Larkoski, Marzani, JDT, 1502.01719

2-prong substructure:

Signal grooming: Rubin, 1002.4557; Dasgupta, Powling, Siodmok, 1503.01088 2-prong jet shapes: Feige, Schwartz, Stewart, JDT, 1204.3898; Isaacson, Li, Li, Yuan, 1505.06368 Separation power: Larkoski, Moult, Neill, 1409.6298, 1507.03018; Dasgupta, Schunk, Soyez, 1512.00516

3-prong substructure:

Planar flow: Field, Gur-Ari, Kosower, Mannelli, Perez, 1212.2106 Fractional jets: Bertolini, JDT, Walsh, 1501.01965 Power counting: Larkoski, Moult, Neill, 1411.0665

Non-perturbative substructure:

Jet charge: Krohn, Schwartz, Lin, Waalewijn, 1209.2421; Waalewijn, 1209.3019 Track-only shapes: Chang, Procura, JDT, Waalewijn, 1303.6637, 1306.6630

Combination of fixed-order, direct resummation, SCET, RG evolution, and new techniques (e.g. Sudakov safety, multi-differential projections)

Two 2-Prong Case Studies

Simple observable requires new calculational techniques

ATLAS 13 TeV Baseline

[ATLAS-CONF-2015-068, -071, -075, -080, see also 1510.05821]

[using Larkoski, Moult, Neill, 1409.6298, 1507.03018]

Theoretical insights yield powerful new discriminant

Substructure from First Principles

zg: Testing the Foundations of QCD

D₂: The Power of Power Counting

ATLAS 8 TeV: Boson Tagging with BDRS

ATLAS 8 TeV: Boson Tagging with BDRS

Calculating Momentum Balance?

Collinear Unsafe* Want: $p(z_g) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g}$

*unless you simultaneously restrict jet mass

[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]

Calculating Momentum Balance?

Collinear Unsafe* Want: $p(\boldsymbol{z_g}) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\boldsymbol{z_o}}$

*unless you simultaneously restrict jet mass

Calculable...

Need: $p(\mathbf{z_g}|\boldsymbol{\theta_g}) = \frac{p(\mathbf{z_g}, \boldsymbol{\theta_g})}{p(\boldsymbol{\theta_g})}$

... with Safe companion

Calculating Momentum Balance?

Collinear Unsafe* Want: $p(z_g) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g}$

*unless you simultaneously restrict jet mass

Calculable...

Need: $p(\mathbf{z_g}|\mathbf{\theta_g}) = \frac{p(\mathbf{z_g}, \mathbf{\theta_g})}{p(\mathbf{\theta_g})}$

... with Safe companion

"Sudakov Safe" Insight: $p(z_g) = \int d\theta_g \, p(\theta_g) \, p(z_g | \theta_g)$

Sudakov form factor (all orders in α_s)

Perturbative (fixed order in α_s)

Introducing β

Mass Drop

[Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Soft Drop

$$z > z_{\rm cut} \, \theta^{\beta}$$

More	\approx Mass Drop	Less
Grooming	· · ·	Grooming
β < 0	β = 0	β > 0

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

[Larkoski, Marzani, JDT, 1502.01719; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699]

[Larkoski, Marzani, JDT, 1502.01719; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699]

[Larkoski, Marzani, JDT, 1502.01719; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699]

 $\beta = 0$

[Larkoski, Marzani, JDT, 1502.01719; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699]

 $\beta > 0$

Jesse Thaler — Theoretical Advances in Jet Substructure

β < 0

 $\beta \rightarrow -\infty$

 $\beta \rightarrow \infty$

≈ independent of α_s (!) ≈ independent of jet energy/radius ≈ same for quarks/gluons

[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699]

Substructure from First Principles

zg: Testing the Foundations of QCD

D₂: The Power of Power Counting

D₂: Test for 2-Prong Substructure

correlation

[Larkoski, Salam, JDT, 1305.0007; see also Banfi, Salam, Zanderighi, hep-ph/0407286; [ankowiak, Larkoski, 1104.1646]

Discriminants: $X_2 \rightarrow 0$ for exactly 2-prong

$$C_2 = \frac{e_3}{(e_2)^2}$$

Natural choice?

(same number of z's in numerator/denominator)

$$D_2 = \frac{e_3}{(e_2)^3}$$

Provably best choice!

[Larkoski, Moult, Neill, 1409.6298]

Power Counting: I-prong Background

Power Counting: 2-prong Signal

 C_1C_2 S z_{cs} $e_2 \simeq R_{12}$ $z_i \simeq$ Z_S C_1C_2C C_1C_2 or CC_S $C_1C_2C_S$ CC SX C_1C_2S $e_3 \simeq R_{12} z_s + R_{12}^2 R_{cc} + R_{12}^3 z_{cs}$ $R_{ij} \simeq R_{cc}$ R_{12} 1

> [Larkoski, Moult, Neill, 1409.6298, 1507.03018; collinear-soft modes also appear in Bauer, Tackmann, Walsh, Zuberi, 1106.6047; Procura, Waalewijn, Zeune, 1410.6483; Larkoski, Moult, Neill, 1501.04596; Becher, Neubert, Rothen, Shao, 1508.06645; Chien, Hornig, Lee, 1509.04287]

 $D_2 = \frac{e_3}{(e_2)^3}$

Unlike C₂, clean separation of I-prong from 2-prong

> Basis for ATLAS "R2 D₂" tagger

Novel QCD calculation based on merging two SCET factorization theorems (!) and projecting triple-differential cross section (!)

(n.b. e^+e^- calculation with $\beta = 2$)

Summary

Substructure from First Principles

From tests in simulated data to calculations in QCD Growing catalog of observables, growing toolbox of approaches

z_g : Testing the Foundations of QCD

Simple observable requires new calculational technique (Sudakov safety) The future? Idea \rightarrow simulation \rightarrow calculation \rightarrow open data analysis

D₂: The Power of Power Counting

Theoretical insights yield powerful new 2-prong discriminant

More About R2 D₂

ATLAS I 3 TeV Baseline: "R2 D2"

 $R_{sub} = 0.2$ trimming with D_2 tagging

ATLAS 13 TeV Baseline: "R2 D2"

First 13 TeV results

[ATLAS-CONF-2015-068, -071, -075, -080]

More About Sudakov Safety

Calculating Groomed Jet Mass

Mass Drop

[Butterworth, Davison, Rubin, Salam, 0802.2470]

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Soft Drop

More	≈ Mass Drop	Less
Grooming	I	Grooming
β < 0	β = 0	β > 0

Soft-Dropped Jet Mass

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

I. Use Sudakov Form Factors

[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]

2. Use Fragmentation Functions

3. Learn from Our Elders

Me: " ϕ is IRC unsafe"

My Elder: "We explicitly calculated $d\sigma/d\phi$ in 1978"

$$\frac{2\pi}{\sigma_0} \frac{d\sigma}{d\varphi} = \frac{1 + O(\alpha_s(Q^2)) + \frac{\alpha_s(Q^2)}{\pi} (\frac{16}{3} \ln \frac{3}{2} - 2) \cos 2\varphi}{Born \ \text{cross section despite ambiguity (!)}}$$

Lesson: Use IRC limit to resolve ambiguities

[Pi, Jaffe, Low, 1978; Kramer, Schierholz, Willrodt, 1978]

More About Open Data

Additional zg Theory Plots

[[]Larkoski, Marzani, JDT, 1502.01719]

Jesse Thaler — Theoretical Advances in Jet Substructure

CMS Jet Primary Data Set Triggers

Corrected Jet pT Spectrum

Jet Kinematics

Simple Substructure

2-prong Substructure

Track-Only Substructure

Soft-Killed Substructure

Changing z_{cut}

