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Scattering amplitudes

* important ingredients for cross sections

* for phenomenology, calculations are
required for many processes

* calculations very challenging

e often, beautiful mathematical structures
help with practical calculations



ldeal and ‘real scattering amplitudes

Is there some
simpler version
of QCD that
allows to
understand key
properties of
scattering
amplitudes!?

How can we
obtain
numerical
results for
Cross sections

at the LHC

This talk: tools for ‘real’ QCD coming from ‘ideal’ amplitudes




|[dealized ‘toy’ theories: from Kepler to QFT

|dealized systems play an important role in physics

Often, (hidden) symmetries help to solve a problem

Example |: Kepler problem
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® [aplace-Runge-Lenz (LRL) vector is conserved
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® consequence: orbits do not precess



Example 2: Hydrogen atom

* described by quantum mechanics

;4=PHEIE.'IHRBEFI PUFH*
* hidden symmetry: % L
Laplace-Runge-Lenz-Pauli vector =]
* gives elegant algebraic way to find spectrum é
E, = TER n=12...

* explains why there are n?2 states of energy E_n.

Is there a quantum field theory (preferably a gauge theory)
that has the same symmetry?



Example 3: N=4 super Yang-Mills

* generalization of massless QCD

- gluons, plus 4 complex fermions and 6 scalars in adjoint representation

- masses can be added via Higgs mechanism

e conformal symmetry and (extended) supersymmetry

* has a hidden dual conformal symmetry

[Drummond, JMH, Korchemsky, Sokatchev, 2008]
[Yangian interpretation: Drummond, JMH, Plefka, 2009]

* this symmetry is a generalization of the LRL symmetry to a

(planar) relativistic quantum field theory
[JMH and Caron-Huot, 201 3]

e.g., extra symmetry governs spectrum of
bound states of massive VV bosons




Laplace-Runge-Lenz symmetry

classical mechanics Kepler problem
quantum mechanics Hydrogen atom
quantum field theory (planar) N=4 super

Yang-Mills theory

Open questions:
- |s this the unique gauge theory with this property?
- Is there a generalization to the non-planar level?



From ‘science’ to ‘technology’

N=4 SYM

“I guess there’ll always be a gap between
science and technoloay.”

(slide from Lance Dixon’s talk at EPS HEP11 Grenoble)



On-shell techniques

* original idea: perturbative unitarity of S matrix

* on-shell recursions for tree amplitudes
[Britto, Cachazo, Feng, Witten, PRL 94 (2005)]

e construction of one-loop amplitudes

[Bern, Dixon, Dunbar, Kosower, Nucl. Phys. B425 (1994)
[Anastasiou, Britto, Feng, Kunszt, Phys. Lett. B645 (2007)
[Ossola, Papadopoulos, Pittau, Nucl. Phys. B763 (2007)]

* today: automated computations of one-

loop amplitudes .
NLO revolution



Examples of analytic progress:
iIntegrals with massless internal lines

* massless 2-2 scattering to 3 loops
[JMH, Smirnov, Smirnov] JHEP 1307 (2013) 128

s=(p1+p2)® t=(pa+ps)’
r=t/s

[DiVita, Mastrolia, Schubert, Yundin, 2014] JHEP 1409 (2014) 148
non-planar integrals; JMH,A.V. Smirnov,V.A. Smirnov, 2013] JHEP 1403 (2014) 088

* all two-loop integrals
for vector boson
production pp toVV’

[JMH, Melnikov, Smirnov] J|HEP 1405 (2014) 090
[Caola, JMH, Melnikov, Smirnov] |HEP 1409 (2014) 043
[Gehrmann, von Manteuffel, Tancredi, Weihs] JHEP 1406 (2014) 032

for pp toVV:
PP [Gehrmann, Tancredi, Weihs] JHEP 1308 (2013) 070

* new: planar two-loop 5-point integrals
[Gehrmann, JMH, Lo Presti, arXiv:1511.05409]
[Papadopoulos, Tommasini, Wever, arXiv: 151 1.09404]



Examples of analytic progress:
iIntegrals with massive internal lines

* integrals for Bhabha scattering scales:
[JMH,V. Smirnov, JHEP 1311 (2013) 041] % % % s, t,m?
° Scattering amplitudes [JMH, S. Caron-Huot, JHEP 1406
& cross sections (2014) T14]
in massive toy model in s,t,m?
N=4 sYM

3 loops and 3 scales!

* NLO QCD corrections to H to Z gamma
[Bonciani, Del Duca, Frellesvig, JMH, Moriello, JHEP 1508 (2015) 108]

[Gehrmann, Guns, Kara, JHEP 1509 (2015) 038]

¢ integrals needed for flavor physics [Huber, Kraenkl, JHEP 1504 (2015) 140]
g pny



| oop Integrands and integrals

Typical steps in an amplitude calculation:

* determine and simplify loop integrand

* write it in a convenient basis of loop
integrals

e carry out the loop integrations



Analyzing loop Integrands:
maximal cuts, leading singularities

* maximal cuts / leading singuarities

Dy =k* Dy=(k+p1)* D3s=(k+p+p2)° Dy=(k+p+ps+p3)

. / 4*K5(D1)3(D2)6(D3)3(Da) ~ —

residues of integrand at poles: leading singularities

* observation: integrals with constant leading
singularities have very nice properties



‘d-log forms’

* sometimes, loop integrand can be rewritten in
suggestive form

D, D3 [Arkani-Hamed et al, 2012]

4 2 2
A0 ):(D = A0 x /ﬁ(fié )(fggi@)iﬁ ;&3) E [Caron-Huot, talk at Trento, 2012]
D1 P1 T P2 — P4
4
p

[Lipstein and Mason, 2013-2014]

1 4

d*l (p1 + p2)*(p1 + p3)?
C2(0 4 p1)?(L + p1 + p2)? (£ — pa)?

el a2

* makes leading singularities obvious

* both for planar and non-planar integrals
[Arkani-Hamed et al, 2014; Bern et al,, 201 5]



| eading singularities as guiding
principle for an integral basis

* conjecture: integrals with constant leading

singularities give rise to
[Arkani-Hamed et al, 2012]

[Arkani-Hamed, Bourjaily, Cachzao, Trnka, 201 0]

. are (rational linear combinations of)
polylogarithmic functi<1>ns of uniform weight

eg. Lis(1 —xz/y)+ 5 10g3(a?) + 7’ log(y)

* pure functions

* although first understood in N=4 sYM, this also
applies for integrals needed for QCD



Differential equations (DE) technique

* idea: differentiate Feynman integral w.r.t. external
variables, e.g. s, t, masses

Some general facts:

* a given Feynman integral [ satisfies an n-th order DE

* equivalently described by a system of n first-order
equations for f

— —

Oz f(2,€) = Az, €) f(x,€)

Long and successful history:
[Kotikov, 1991] [Remiddi, 1997] [Gehrmann, Remiddi, 2000] [...]

New idea: use integrals with constant leading
singularities as basis for DE system  [MH,2013]



Canonical form of the differential
equations

Example: one dimensionless variable x; D = 4 — 2¢

e the above equations decouple at D=4

* expansion to any order in € is linear algebra
answer: multiple polylogarithms of uniform weisht (‘transcendentality’)

* asymptotic behavior f(a;‘, €) ~ (x — a;‘k)EA’“ﬁ)(e)

¢ natural extension to multi-variable case



Example: one-loop four-point integral

D =4 — 2¢

'basisf{><><,§§, ) x=1/s

* (regular) singular points s=0, t=0, u=-s—-1t=0

* asymptotic behavior governed by matrices a, b

* Solution: expand to any order in €

f — ZkZO ekf(k) f(k) is k-fold iterated integral (uniform weight)



Multi-variable case and the alphabet

* Natural generalization to multi-variable case

df(Fe) = ed | Y Aploga()| f(Z;e)

constant matrices letters (alphabet)

e Examples of alphabets:

4-point on-shell a={z,1+x}
two-variable example (from a={z,1+z,y,1+y,z+y,1+zy}
| -loop Bhabha scattering): 0MH.. Smirnov]
“hexagon functions " in o={z,y,21-2,1-y1-z
N=4 SYM 1 —zy,1 —x2,1—yz,1—2yz}
[Goncharoy, Spradlin,Vergu,Volovich] [Caron-Huot, He]
[Dixon, Drummond, ].M.H.] [Dixon et al.]

e Matrices and letters determine solution

* Immediate to solve in terms of iterated integrals




Beyond iterated integrals

* One such class are elliptic functions, needed e.g. in top quark
Ph)’SiCS [Czakon and Mitoy, 2010]

* proposal for generalization to the elliptic case  [JMH,2014]

(and beyond): A(z,€) linear in ¢ e.g. sunrise integral:
—2¢0 0 0 0 0 )
1 o 1
T 1+ x
0 0 1—e¢€ 33—|—9€—1—26/
, 0 0 0
0
i 1/94«x . 0

—3 1+ 3¢ —1 — 2¢

* outlook: connect this to work on elliptic
polylogarithms [Brown et al,Vanhove et al,Weinzier| et al.]



Analytic results for scattering
amplituaes

* There has been enormous progress in
analytically computing Feynman integrals

* result for Feynman integrals are as
compact and simple as possible

* What about the amplitudes!?

* Does the simplicity remain (if one looks
hard enough)?



All-plus five-point two-loop amplitude

AP =AY _Z (—v> + R F” +0(e),

st [(1 — 75)%?5%1%2}

(v 4+ v3 — v5)

I23 5

3 3

10 2
+ —V1V2 + —UV1V3 ; .

v = 21 - o : cyclic shift
1 = 2p1 - D2 Y [Gehrmann, JMH, Lo Presti, 2015]




Conclusions

* N=4 sYM - inspired methods are useful in QCD

* Feynman integrals are no longer the bottleneck
of NNLO calculations

we are seeing the beginning of a NNLO revolution!

Outlook

* classification of special functions relevant to two-
loop scattering amplitudes

* many further developments in N=4 sYM



