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Scattering amplitudes
• important ingredients for cross sections

• for phenomenology, calculations are 
required for many processes

• calculations very challenging

• often, beautiful mathematical structures 
help with practical calculations



‘Ideal’ and ‘real’ scattering amplitudes

How can we 
obtain 
numerical 
results for 
cross sections 
at the LHC

This talk: tools for ‘real’ QCD coming from ‘ideal’ amplitudes

 Is there some 
simpler version 
of QCD that 
allows to 
understand key 
properties of 
scattering 
amplitudes?



Idealized ‘toy’ theories: from Kepler to QFT
Idealized systems play an important role in physics

Often, (hidden) symmetries help to solve a problem 

• Laplace-Runge-Lenz (LRL) vector is conserved

• consequence: orbits do not precess
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Example 1: Kepler problem



Example 2: Hydrogen atom

• hidden symmetry:
Laplace-Runge-Lenz-Pauli vector

• gives elegant algebraic way to find spectrum

• described by quantum mechanics

En = �mk2

2~2
1

n2
n = 1, 2, . . .

• explains why there are n^2 states of energy E_n.

Is there a quantum field theory (preferably a gauge theory) 
that has the same symmetry?



Example 3: N=4 super Yang-Mills 

• conformal symmetry and (extended) supersymmetry

• generalization of massless QCD

• has a hidden dual conformal symmetry

• this symmetry is a generalization of the LRL symmetry to a 
(planar) relativistic quantum field theory

[JMH and Caron-Huot, 2013]

[Yangian interpretation: Drummond, JMH, Plefka, 2009]

[Drummond, JMH, Korchemsky, Sokatchev, 2008]

- gluons, plus 4 complex fermions and 6 scalars in adjoint representation 

e.g., extra symmetry governs spectrum of 
bound states of massive W bosons

- masses can be added via Higgs mechanism



Laplace-Runge-Lenz symmetry

 Kepler problem

 Hydrogen atom

 classical mechanics

quantum mechanics

quantum field theory (planar) N=4 super 
Yang-Mills theory

Open questions: 

- Is this the unique gauge theory with this property? 

- Is there a generalization to the non-planar level?



(slide from Lance Dixon’s talk at EPS HEP11 Grenoble)

N=4 SYM

QCD

From ‘science’ to ‘technology’



On-shell techniques
• original idea: perturbative unitarity of S matrix

• today: automated computations of one-
loop amplitudes

[Ossola, Papadopoulos, Pittau, Nucl. Phys. B763 (2007)]

• on-shell recursions for tree amplitudes

• construction of one-loop amplitudes
[Bern, Dixon, Dunbar, Kosower, Nucl. Phys. B425 (1994)]

[Anastasiou, Britto, Feng, Kunszt, Phys. Lett. B645 (2007)]

[Britto, Cachazo, Feng, Witten, PRL 94 (2005)]

NLO revolution



Examples of analytic progress:  
integrals with massless internal lines

• massless 2-2 scattering to 3 loops
[JMH,  Smirnov,  Smirnov] JHEP 1307 (2013) 128

non-planar integrals: [JMH, A.V. Smirnov, V.A. Smirnov, 2013] JHEP 1403 (2014) 088

s = (p1 + p2)
2 t = (p2 + p3)

2

x = t/s

[Di Vita, Mastrolia, Schubert, Yundin, 2014] JHEP 1409 (2014) 148

• all two-loop integrals 
for vector boson 
production pp to V V’

[JMH, Melnikov, Smirnov] JHEP 1405 (2014) 090

[Caola, JMH, Melnikov, Smirnov] JHEP 1409 (2014) 043

for pp to VV:
[Gehrmann, von Manteuffel, Tancredi, Weihs] JHEP 1406 (2014) 032

[Gehrmann, Tancredi, Weihs] JHEP 1308 (2013) 070

• new: planar two-loop 5-point integrals
[Gehrmann, JMH, Lo Presti, arXiv:1511.05409]

[Papadopoulos, Tommasini, Wever, arXiv:1511.09404]



Examples of analytic progress:  
integrals with massive internal lines

• integrals for Bhabha scattering                              scales:
[JMH, V. Smirnov, JHEP 1311 (2013) 041]

• scattering amplitudes 
& cross sections
in massive toy model in 
N=4 sYM

[JMH, S. Caron-Huot, JHEP 1406 
(2014) 114] 

3 loops and 3 scales!

• integrals needed for flavor physics

• NLO QCD corrections to H to Z gamma
[Bonciani, Del Duca, Frellesvig, JMH, Moriello, JHEP 1508 (2015) 108] 

[Gehrmann, Guns, Kara, JHEP 1509 (2015) 038] 

[Huber, Kraenkl, JHEP 1504 (2015) 140] 

• …



Loop integrands and integrals

• determine and simplify loop integrand

• write it in a convenient basis of loop 
integrals

• carry out the loop integrations

Typical steps in an amplitude calculation:



Analyzing loop integrands:              
maximal cuts, leading singularities

• maximal cuts / leading singuarities
D1 = k2 D2 = (k + p1)

2 D3 = (k + p1 + p2)
2 D4 = (k + p1 + p2 + p3)

2

Z
d4k�(D1)�(D2)�(D3)�(D4) ⇠

1

st

residues of integrand at poles: leading singularities

• observation: integrals with constant leading 
singularities have very nice properties

=



`d-log forms`
• sometimes, loop integrand can be rewritten in 
suggestive form

[Arkani-Hamed et al, 2014; Bern et al., 2015]

[Arkani-Hamed et al, 2012]

This is more than mere amusement. It immediately tells us that with an appro-

priate choice of variables representing the BCFW-shifts, the one-loop amplitude can

be represented in a remarkably simple form:
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Of course, this does not look anything like the more familiar expression, [81],
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In this form, it is not at all obvious that there is any change of variables that reduces

the integrand to the “dlog”-form of (2.33). However, following the rule for identifying

o↵-shell loop momenta in terms of on-shell data, (2.27), we may easily identify the

map which takes us from the ` of (2.34) to the ↵
i

of (2.33):
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where `⇤ is either of the two points null separated from all four external momenta.

This expression will be derived in detail in section 16.3.

As we will see, the existence of this “dlog” representation for loop integrands is a

completely general feature of all amplitudes at all loop-orders. But the possibility of

such a form even existing was never anticipated from the more traditional formula-

tions of field theory. Indeed, even for the simple example of the four-particle one-loop

amplitude, the existence of a change of variables converting d4` to four dlog’s went

unnoticed for decades. We will see that these “dlog”-forms follow directly from the

on-shell diagram description of scattering amplitudes generated by the BCFW recur-

sion relations, (2.26). Beyond their elegance, these dlog-forms suggest a completely

new way of carrying out loop integrations, and more directly expose an underlying,

“motivic” structure of the final results which will be a theme pursued in a later, more

extensive work.

The equivalence of on-shell diagrams related by mergers and square-moves clearly

represents a major simplification in the structure on-shell diagrams; but these alone

cannot reduce the seemingly infinite complexities of graphs with arbitrary numbers

of ‘loops’ (faces) as neither of these operations a↵ect the number of faces of a graph.

However, using mergers and square-moves, it may be possible to represent an on-shell

diagram in a way that exposes a “bubble” on an internal line. As one might expect,

there is a sense in which such diagrams can be reduced by eliminating bubbles:
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[Caron-Huot, talk at Trento, 2012]

• makes leading singularities obvious

[Lipstein and Mason, 2013-2014]

• both for planar and non-planar integrals



Leading singularities as guiding 
principle for an integral basis

• conjecture: integrals with constant leading 
singularities give rise to ‘pure’ functions

• pure functions satisfy simple differential equations

• pure functions are (rational linear combinations of) 
polylogarithmic functions of uniform weight

• although first understood in N=4 sYM, this also 
applies for integrals needed for QCD

Li3(1� x/y) +

1

2

log

3
(x) + ⇡

2
log(y)

e.g.

[Arkani-Hamed, Bourjaily, Cachzao, Trnka, 2010]

[Arkani-Hamed et al, 2012]



Differential equations (DE) technique

• a given Feynman integral        satisfies an n-th order DEf

• equivalently described by a system of n first-order 
equations for ~f

• idea: differentiate Feynman integral w.r.t. external 
variables, e.g. s, t, masses
Some general facts:

Long and successful history:
[Kotikov, 1991] [Remiddi, 1997] [Gehrmann, Remiddi, 2000] […]

New idea: use integrals with constant leading 
singularities as basis for DE system [JMH, 2013]

@

x

~

f(x, ✏) = A(x, ✏)~f(x, ✏)



Canonical form of the differential 
equations

• the above equations decouple at D=4

• expansion to any order in     is linear algebra
answer: multiple polylogarithms of uniform weight (‘transcendentality’)

✏

D = 4� 2✏Example: one dimensionless variable     ;              
x

• asymptotic behavior ~

f(x; ✏) ⇠ (x� xk)
✏Ak

~

f0(✏)

• natural extension to multi-variable case
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X
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x� x

k

~
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Example: one-loop four-point integral

differential equations

x = t/s

• (regular) singular points 

@

x

f = ✏


a

x

+
b

1 + x

�
f

s = 0 , t = 0 , u = �s� t = 0

• basis           {                ,          ,             }f =
D = 4� 2✏

• Solution: expand to any order in ✏
f =

P
k�0 ✏

kf (k) f (k)
is k-fold iterated integral (uniform weight)

a =

0

@
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0 0 0
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2 2 1
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A

• asymptotic behavior governed by matrices a, b



Multi-variable case and the alphabet
• Natural generalization to multi-variable case

d

~

f(~x; ✏) = ✏ d

"
X

k

Ak log↵k(~x)

#
~

f(~x; ✏)

constant matrices letters (alphabet)

4-point on-shell ↵ = {x, 1 + x}
two-variable example (from 
1-loop Bhabha scattering):

↵ = {x , 1± x , y , 1± y , x+ y , 1 + xy}

• Matrices and letters determine solution

• Immediate to solve in terms of iterated integrals

``hexagon functions`` in 
N=4 SYM

[Caron-Huot, He][Goncharov, Spradlin, Vergu, Volovich]

[Dixon, Drummond, J.M.H.] [Dixon et al.]

• Examples of alphabets:

[J.M.H., Smirnov]

↵ ={x, y, z, 1� x, 1� y, 1� z,

1� xy, 1� xz, 1� yz, 1� xyz}



Beyond iterated integrals

• outlook: connect this to work on elliptic 
polylogarithms [Brown et al, Vanhove et al, Weinzierl et al.]

• One such class are elliptic functions, needed e.g. in top quark 
physics [Czakon and Mitov, 2010]

• Case 2: integrating out the ✏0 term can be done using algebraic functions; sometimes
a change of variables leads to a rational dependence.

This is something that occurs typically for integrals involving masses. As an example
let us choose the 2⇥ 2 system for a massive bubble and tadpole integral [34, 35]. The
bubble integral depends on an external invariant s, as well as on an internal mass m.
We set s = x and m2

= 1 without loss of generality. Before choosing appropriate
normalization factors, the differential equation in x reads

@
x
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0 0

✏

4�x

2+✏x

(4�x)x

!
~f(x, ✏) . (4.11)

Here, integrating out the constant term in ✏ amounts to choosing a transformation
matrix T = diag(1, 1/

p
1� 1/x). Note that contrary to all transformations discussed

so far, this transformation is not rational (in the chosen variables). Under ~f �! T ~f ,
the system of DE becomes

@
x
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� 1p
x(x�4)

1

x�4

!
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The r.h.s. is / ✏, as promised. Finally, we note that in this case, one can recover a
rational form of the equations by employing the change of variables x = �(1� y)2/y,
with the resulting system having regular singularities in y = ±1, 0,1.

• Case 3: integrating out the ✏0 term leads to elliptic or more complicated functions.

A simple example of this kind is the system of DE satisfied by complete elliptic
integrals. The difference w.r.t. the previous example lies in the fact that this is a
coupled 2 ⇥ 2 system of differential equations, even at ✏ = 0. The fact that the
appearance of elliptic functions can be seen in this way was also pointed out in the
algorithm of ref. [25].

For Feynman integrals, the simplest example where this can occur is perhaps the two-
dimensional two-loop sunrise integral with equal masses, see e.g. [36–40]. There are
singular points at x = 0,�1,�1/9,1, where x = m2/(�p2). Making an appropriate
basis choice, one obtains a system of DE (in D = 2 � 2✏ dimensions) @
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One may verify that all eigenvalues are linear in ✏, as expected. Analyzing this system
at ✏ = 0, and writing it as a second-order eq. for one of the integrals, one recovers

– 16 –

e.g. sunrise integral:A(x, ✏)
• proposal for generalization to the elliptic case 
(and beyond):                     linear in 

[JMH, 2014]

✏



Analytic results for scattering 
amplitudes

• There has been enormous progress in 
analytically computing Feynman integrals

• result for Feynman integrals are as 
compact and simple as possible

• What about the amplitudes?

• Does the simplicity remain (if one looks 
hard enough)?



All-plus five-point two-loop amplitude

[Gehrmann, JMH, Lo Presti, 2015]

3

RESULT FOR ALL-PLUS AMPLITUDE

We consider the unrenormalized all-plus five-gluon am-
plitude at leading color:
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Here S5/Z5 denote all non-cyclic rotations of five points.
Since the amplitude vanishes at tree-level, it is finite at
the one-loop level,
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At two loops, the infrared and ultraviolet divergent terms
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We use the integral representation of [1] and express it in
terms of our basis of integrals. Plugging in the solution
for the ϵ-expansion of the latter, we analytically verify
the divergence structure of eq. (7). To define the finite
remainder function, the expansion of (5) to order ϵ2 is
derived, which involves the one-loop massless pentagon
integral to this order, computed from its differential equa-
tion. In the finite remainder, remarkably all Chen iter-
ated integrals of weight one, three and four cancel out.
We then express the remaining weight two functions in
terms of dilogarithms, and find the following expression
for the finite remainder,
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where σi cyclically shifts all indices (of p, v, and I) by i,
and where

I23,5 =ζ2 + Li2

[

(v5 − v2)(v5 − v3)

v2v3

]

− Li2

[

v5 − v3
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]
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FIG. 2. Five-particle amplitude factorizing into four-point
amplitudes and splitting functions in the collinear limit.

Note that eq. (8) contains both parity odd and even
terms. We remark that the trace can also be written in
a natural way using momentum twistors.

We compared our analytical result for the unrenormal-
ized two-loop amplitude (7) with the numerical values
quoted in [1] for specific phase space points in the Eu-
clidean region, finding full agreement. In the Euclidean
region, this expression is single-valued and real. We note
that eq. (9) can be rewritten in a form where this is
manifest, and that our result can straightforwardly be
analytically continued to other kinematical regions.

The result above is for pure Yang-Mills theory. We
would like to mention that the full nf dependence can be
reconstructed in a simple way: the n2

f terms only come
from a restricted class of diagrams, and the remaining nf

terms are fixed by supersymmetry [30].

LIMITS

Scattering amplitudes have universal factorization
properties in soft and collinear limits. They serve as an
important check of our result.

We take the p4||p5 collinear limit, without loss of gen-
erality. In the limit, one expects (cf. Fig. 2)

A(2)
4 (1+, 2+, 3+, 4+, 5+)

p4||p5−→ (10)

A(1)
4 (1+, 2+, 3+, P+) SplitP→45 (1)(−P−, 4+, 5+)

+A(1)
4 (1+, 2+, 3+, P−) SplitP→45 (1)(−P+, 4+, 5+)

+A(2)
4 (1+, 2+, 3+, P+) SplitP→45 (0)(−P−, 4+, 5+) .

where ‘Split’ are splitting amplitudes [29]. The ampli-
tudes appearing on the right hand side of eq. (10) can
be found in [30].

Taking the collinear limit of (7), we recover the struc-
ture predicted by (10). It is interesting to note in this
context that the second line of eq. (8) contains terms
that behave as [45]/⟨45⟩ in this limit. The latter repro-
duces a contribution from the helicity-violating one-loop
splitting function SplitP→45 (1)(−P+, 4+, 5+).
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ated integrals of weight one, three and four cancel out.
We then express the remaining weight two functions in
terms of dilogarithms, and find the following expression
for the finite remainder,
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where σi cyclically shifts all indices (of p, v, and I) by i,
and where
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FIG. 2. Five-particle amplitude factorizing into four-point
amplitudes and splitting functions in the collinear limit.

Note that eq. (8) contains both parity odd and even
terms. We remark that the trace can also be written in
a natural way using momentum twistors.

We compared our analytical result for the unrenormal-
ized two-loop amplitude (7) with the numerical values
quoted in [1] for specific phase space points in the Eu-
clidean region, finding full agreement. In the Euclidean
region, this expression is single-valued and real. We note
that eq. (9) can be rewritten in a form where this is
manifest, and that our result can straightforwardly be
analytically continued to other kinematical regions.

The result above is for pure Yang-Mills theory. We
would like to mention that the full nf dependence can be
reconstructed in a simple way: the n2

f terms only come
from a restricted class of diagrams, and the remaining nf

terms are fixed by supersymmetry [30].

LIMITS

Scattering amplitudes have universal factorization
properties in soft and collinear limits. They serve as an
important check of our result.

We take the p4||p5 collinear limit, without loss of gen-
erality. In the limit, one expects (cf. Fig. 2)
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where ‘Split’ are splitting amplitudes [29]. The ampli-
tudes appearing on the right hand side of eq. (10) can
be found in [30].

Taking the collinear limit of (7), we recover the struc-
ture predicted by (10). It is interesting to note in this
context that the second line of eq. (8) contains terms
that behave as [45]/⟨45⟩ in this limit. The latter repro-
duces a contribution from the helicity-violating one-loop
splitting function SplitP→45 (1)(−P+, 4+, 5+).
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RESULT FOR ALL-PLUS AMPLITUDE

We consider the unrenormalized all-plus five-gluon am-
plitude at leading color:

A5(1
+2+3+4+5+)|leading color =g3

∑

L≥1

(

g2NcΓ
)L

×
∑

σ∈S5/Z5

tr(T a
σ(1)T a

σ(2)T a
σ(3)T a

σ(4)T a
σ(5))

×A(L)
5 (σ(1)+σ(2)+σ(3)+σ(4)+σ(5)+) . (4)
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remainder function, the expansion of (5) to order ϵ2 is
derived, which involves the one-loop massless pentagon
integral to this order, computed from its differential equa-
tion. In the finite remainder, remarkably all Chen iter-
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amplitudes and splitting functions in the collinear limit.

Note that eq. (8) contains both parity odd and even
terms. We remark that the trace can also be written in
a natural way using momentum twistors.

We compared our analytical result for the unrenormal-
ized two-loop amplitude (7) with the numerical values
quoted in [1] for specific phase space points in the Eu-
clidean region, finding full agreement. In the Euclidean
region, this expression is single-valued and real. We note
that eq. (9) can be rewritten in a form where this is
manifest, and that our result can straightforwardly be
analytically continued to other kinematical regions.

The result above is for pure Yang-Mills theory. We
would like to mention that the full nf dependence can be
reconstructed in a simple way: the n2

f terms only come
from a restricted class of diagrams, and the remaining nf

terms are fixed by supersymmetry [30].
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properties in soft and collinear limits. They serve as an
important check of our result.
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erality. In the limit, one expects (cf. Fig. 2)
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where ‘Split’ are splitting amplitudes [29]. The ampli-
tudes appearing on the right hand side of eq. (10) can
be found in [30].

Taking the collinear limit of (7), we recover the struc-
ture predicted by (10). It is interesting to note in this
context that the second line of eq. (8) contains terms
that behave as [45]/⟨45⟩ in this limit. The latter repro-
duces a contribution from the helicity-violating one-loop
splitting function SplitP→45 (1)(−P+, 4+, 5+).



Conclusions
• N=4 sYM - inspired methods are useful in QCD

• many further developments in N=4 sYM

• classification of special functions relevant to two-
loop scattering amplitudes

we are seeing the beginning of a NNLO revolution!

• Feynman integrals are no longer the bottleneck 
of NNLO calculations

Outlook


