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Scattering amplitudes are enhanced for soft and collinear
emissions

e | arge logarithms in higher orders corrections terms for
observables sensitive to such emissions

e Resummation: for some observables, we manage to sum
large logarithms to all orders.

Parton showers can resum leading-logarithmic terms, here | will
discuss techniques such as Soft-Collinear Effective Theory for
resummation to higher accuracy.



Simple structure of soft and collinear emissions
leads to factorization. Simplest examples

e~ — 2jets pp — 0105 + 0jets
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Factorization = scale separation = Resummation



Overview
e Recent highlights

® (Ot spectra of vector bosons
® Cross sections with a jet veto
o [\-jettiness subtraction

e New developments

e Automated resummation

o Resummation for jet processes



Recent highlignts
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Combining resummation with fixed-order results (“matching”)
vields some of the most precise collider physics predictions

avallable.

* Two numbers are not known to this accuracy: Vcusp and ds; estimate their effect.
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 Resummation: includes
Iogs at low gr neglects gr°/
MZ at hlgh aT

» Fixed order: good at large
gr but large logs at small

ar.

 Matched result: the best of
both worlds.

Important goal: extend higher-log resummation to
more and more exclusive observables!



Side remark: Higgs cross section
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e Theory predictions by different groups are consistent

e Can change normalization (i.e. consider spectrum instead of o) to
get better agreement at higher gr but then have larger disagreement
in lowest bin.



Cross sections with a jet veto

A veto on jets pjﬁt < pE ~ 15 - 30GeV s used to
suppress top background, in particular in processes
involving W-bosons, e.g. In

pp— W+ W-, pp—H — W+ W-, etc.

veto
— Large Sudakov logarithms &g lnk (pg >

A lot of work on their resummation, both in QCD and SCET:

« Higgs: Banfi, Salam, Zanderighi '12; + Monni '12; TB, Neubert '12 +
Rothen "13; Tackmann, Walsh, Zuberi '12 + Stewart '13; Liu Petriello '13;
+ Boughezal, Tackmann and Walsh '14; Banfi et al. ‘15

e WA+ W-:Jdaiswal, Okui '14; Monni, Zanderighi '14; TB, Frederix, Neubert,
Rothen '14; Jaiswal, Meade, Ramani '15



HIgQgs cross section with a jet veto

Banfi, Caola, Dreyer, Monni, Salam, Zanderighi and Dulat ‘15
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LL resummation of logarithms of the jet radius R
quark-mass effects

Consistent combination with predictions for H+1-jet and H+2-jet rates.
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Soft-collinear fixed-order computations

* Expansion around soft and collinear limit simplifies fixed-order
computations

* Approximate higher-order results
e soft-gluon resummation

« N°LO Higgs cross section was computed as a high-order
expansion around soft limit Anastasiou et al. 15

» Slicing methods at NNLO: use expanded NNLO results near
singular limit, NLO computation away from it.

* gt subtraction Catani, Grazzini ‘07

* N-jettiness subtraction, Boughezal, Focke, Liu Petriello
'15; Gaunt, Stahlhofen, Tackmann, Walsh ‘15

* Need fixed-order computations of H, B, J, S as inputs!



Automated resummation



Higher-log resummations (in SCET or in QCD) are usually
carried out analytically, on a case-to-case basis. Notable
exceptions: CAESAR Banfi, Salam, Zanderighi ‘04, ARES
Banfi, McAslan, Monni, Zanderighi ‘14

* |nefficient and error prone

In contrast, LO and NLO computations have been
completely automated over the past years. These codes
can be used as a basis to perform resummation:

e Large logarithms arise near Born-level kinematics. Can
reweight LO events to achieve resummation.

e Can use NLO codes to compute ingredients for the
resummation: hard function, jet and soft functions



Factorization theorem for o(pre*)
W+ 1B, Neubert '12 + Rothen ‘13
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Hqq

§opo
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W —

Beam functions B(prveto) Hard functions H(Q)

* real emission with veto.  virtual corrections,
perturbative part ® PDF standard QCD loops

* process independent * process dependent

Born-level kinematics for small prveto



Automated resummation based on MG5 aMC@NLO
W+ TB, Neubert, Rothen, Frederix ‘14
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Beam functions B(prveto) Hard functions H(Q)

e compute once and for all; < from automated one-loop
tabulate using PDF grids computation

Reweight Madgraph Born-level events to obtain NNLL resummed
cross sections. Use aMC@NLO to compute matching.
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 For NLO result we vary prveto/2 < 1 < 2Q.
Madgraph5_aMC@NLO 2.3 (set ickkw

e NNLL+NLO iscloseto NLO at u=Q
Automated NNLL+NLO is implemented in



Decays and Cuts

Important advantage:
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Extension to other observables

Same technigue for automated resummation can also be used for more
general observables. Complications:

 Nontrivial color structure

e Hard function at tree level: Farhi, Feige, Freytsis, Schwartz "15 have
modified Madgraph to provide color information. Automated NLL
resummation for two-jet observables

e Soft function: Gerwick, Schumann, Hoche, Marzani ‘15 have
automated color structure and NLL evolution in Sherpa.

* Loops: Broggio + GoSam modified GoSam so that it provides color
and imaginary part of one-loop amplitudes.

* NNLL needs automated computations of one-loop beam, jet, and soft
functions, two-loop anomalous dimensions.

» Restriction to global observables: only a very limited class of
observables (e.g. event shapes) can be resummed.

e so far no complete higher-log resummations for actual jet cross
sections



Two-loop anomalous dimensions: universality

1B, Garcia i Tormo, Piclum ‘15

 RG invariance, universality and known result for hard-function
anomalous dimensions fixes all two-loop ingredients up to
two numbers.

* These can be obtained numerically with small effort from two-
jet soft function or e*e™ fixed-order codes. Automation of
NNLO 2-jet soft function Bell, Rahn and Talbert "15.



e*e” - dijet (transverse thrust) pp—> Z - ee (transverse thrust) |

.. NLL 05

Int, Inty

1B, Garcia i Tormo, Piclum ‘15

Using this procedure, we have recently extracted all
ingredients for transverse thrust

T, = max Zm Pl T

at NNLL. Numerical implementation for pp—Z+j and
pp—=2j under way.
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resummation for jet processes

1B, Neubert, Rothen, Shao, arXiv:1508.06645



Non-global logarithms

Dasgupta, Salam ‘01

P,
do !
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Consider hemisphere jet masses My and Msin
ete- = 2 |ets. Factorization and resummation works for

Mp = max(M1, Mo)
but fails for the non-global observables
M = M

Nonglobal, because they only probe one hemisphere.




Cone-jet cross sections

Jet cross sections are an important example of non-
global observables. Consider, tor example narrow cone
jets (Sterman-Weinberg jets 77)

contains large logarithms In(&) and In([3).

Non-global because the cross section does not change
under emissions inside the jets.

Complicated pattern of logarithms not captured by
H Ji J2 S (N0 exponentiation!).



Non-global logarithms

A lot of work on these types of logarithms

* Equations for resummation of leading logs, at large N, Banfi,
Marchesini, Smye ‘02 (BMS equation), and beyond Weigert '03,
Hatta, Ueda '13 + Hagiwara ’15; Caron-Huot '15.

* Fixed-order results: 2 loops for S(w,wR). Kelley, Schwartz,
Schabinger and Zhu '11; Hornig, Lee, Stewart, Walsh and Zuberi
'11; Kelley; with jet-cone Kelley, Schwartz, Schabinger and Zhu
‘11; von Manteuffel, Schabinger and Zhu "13, leading non-global
log up to 5 loops by solving BMS equation Schwartz, Zhu 14, 5
loops and arbitrary N, Delenda, Khelifa-Kerfa ‘15

* Approximate resummation of such logs, based on resummation
for observables with n soft subjets. Larkoski, Moult and Neill “15

A systematic factorization of non-global observables was missing.



Soft factorization

Large-angle soft radiation only sees total charge. Identical to
radiation of a single particle flying in the jet direction.

 Emissions have the same structure as the ones of a classical
source (with the total charge of the jet) moving along the jet
direction: Wilson line along jet direction.

e This simple tactorization is a cornerstone of standard
factorization theorems.



Soft emission from a |et

Consider the emission of single soft a gluon from
energetic particles with momenta pi inside a narrow |et:

Approximation: p. =~ E;n*
This approximation breaks down when the soft
emission has a small angle, i.e. when k¥ ~ wn* |

Small region of phase space, but gives a leading
contribution to jet rates!



Coft factorization

1B, Neubert, Rothen, Shao,1508.06645

For cone-jet processes with narrow cones, small angle soft
radiation becomes relevant

e collinear and soft (“coft”)

e resolves individual collinear partons: operators with
multiple Wilson lines



Momentum modes for |et processes

1B, Neubert, Rothen, Shao,1508.06645; Chien, Hornig and Lee 1509.04287

Region Energy Angle Inv. Mass

e Hard Q 1 Q

S [

25 Collinear Q ¢ QO
T W

» Soft 3Q 1 BQ
new Coft 3Q & 3oQ

Full jet cross section is recovered after adding the contributions
from all regions (“method of regions”)

* Additional coft mode has very low characteristic scale 36Q!
Jets are less perturbative than they seem!

* Effective field theory has additional “coft” degree of freedom.



Checks at one and two loops
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Constant ¢y depends on definition of jet axis:
co = —3m° + 20. (Sterman-Weinberg)
co = —Hm%/3+14+12In2  (thrust axis)

Have repeated the same check at two-loop order and checked
against numerical result from Event 2 generator



Factorization for two-jet cross section

1B, Neubert, Rothen, Shao, arXiv:1508.06645

Laplace space color trace |
T f l integration over angles

l -oo l 12

5(r) = 00 H(Q) S(Q7) | > (Tin(Q0) © Unn(Q5T) )

m=1 \ _
T Coft functions with
Soft function m Wilson lines

Hard function Jet functions with m partons
at fixed direction

First all-order factorization theorem for non-global
observable. Achieves full scale separation!



Resummation by RG evolution

Wilson coefficients fulfill renormalization
group (RG) equations, e.qg.

dl—jm (Q0, ) 2‘7]‘3 (Q9, 1) ka

1. Compute Jm at a their characteristic
high scale ur~ Qo

2. Evolve Jm to the scale of low energy
physics ui~ Qopf

Avoids large logarithms ay” In*(f) of scale

ratios which can spoil convergence of
perturbation theory.
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NLL resummation

Need tree-level matrix elements
U, =1+0(as) ; J1 =1, jmrvoz:'sn_l

and one-loop anomalous dimensions

(Vo Ry 0 0
0 Vi R; O
/%1 0 0 V, Ry
arl 0 0 0 W

Challenging to solve!
* Order-by-order structure similar to parton shower.
* Reproduces BMS equation in large N limit
* Close connection to functional RG by Caron-Huot ‘15



summary

 Resummed computations for collider processes can provide very
precise predictions, but are only available for few observables.

« A lot of recent progress to extend higher-log resummation to more
observables

e Automated resummations

« Factorization for non-global observables

e Other hot topics, not covered in my talk

* Role of Glauber gluons” Factorization in their presence? Gaunt
'14; Zeng '15; Rothstein, Stewart 7

e Factorization and resummation for power corrections. Bonocore,
Laenen, Magnea, Vernazza and White '14 + Melville "14; Larkoski
14, + Neill and Stewart ‘14, Kolodrubetz, Moult and Stewart ‘15



Extra slides
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