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Scattering amplitudes are enhanced for soft and collinear 
emissions 

• Large logarithms in higher orders corrections terms for 
observables sensitive to such emissions 

• Resummation: for some observables, we manage to sum 
large logarithms to all orders. 

Parton showers can resum leading-logarithmic terms, here I will 
discuss techniques such as Soft-Collinear Effective Theory for 
resummation to higher accuracy.



Simple structure of soft and collinear emissions 
leads to factorization. Simplest examples
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e+e� ! 2 jets pp ! `1 ¯̀2 + 0 jets

d� = H · J1 ⌦ J2 ⌦ S d� = H ·B1 ⌦B2 ⌦ S

Factorization = scale separation ⇒ Resummation



Overview
• Recent highlights 

• qT spectra of vector bosons 
• cross sections with a jet veto 
• N-jettiness subtraction 

• New developments 
• Automated resummation 
• Resummation for jet processes
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Recent highlights



qT spectrum of Z at N3LL*+N2LO
• Large logarithm 
• Result from CuTe 2.0 TB 

Luebbert, Neubert, Wilhelm, 
to appear. 

• Other codes: DYRes Catani, 
Grazzini et al.; ResBos 
Balasz, Nadolsky, Yuan et 
al.; Banfi, Dasgupta, 
Marzani and Tomlinson

Figure 19: Comparison of the ✏5 N3LLe
p+N2LO prediction using the HERA 15 PDF-set to

experimental data from ATLAS [27]. Deviation w.r.t. the experimental results.

function t(�) (53), are negligible. We chose the function t
3

((78) in the appendix) for the tran-
sition to fixed-order, starting around qT ⇠ 30GeV and did not include any non-perturbative
e↵ects (NPE). We binned our continuous predictions – except for the plot on the top-left side
– according to the experimental data to achieve a better comparability. The deviation plots
below are w.r.t. to the experimental data.

Starting with the tail-region on the right-hand side, we find, that our prediction is compat-
ible to the experimental results within the scale-variation2, but the centre-value is suppressed
compared to it. This could be fixed by choosing a fixed-scale scheme like µ ⇠ M , since it would
result in a approximately 5-10% larger cross section above qT = M , but we are looking at a
normalized cross section, thus any suppression/enhancement in one region is strongly correlated
to an enhancement/suppression in the peak-region. Besides the first bin, which is still a↵ected
by the transition to FO, and the last bin, which is somewhat unreliable due to poor statistics,
the deviation to the centre-value seems almost constant. Besides other possible origins (e.g.
EW-, threshold- or o↵-shell-e↵ects), this indicates a wrong normalization, which is dominated
by the peak-region and leads us to the left hand-side plot.
While the results are indeed compatible in every bin, at least if we included the PDF-uncertainty,
they deviate stronger than expected for a calculation at this order of accuracy. We could sup-
press the region of 20GeV < qT < 50GeV by choosing a di↵erent transition-function, as was
shown in Figure 9, but the e↵ect on the normalization – and thus the tail – would be marginal
and more important, there is no way to correct the deviation around the peak. Introducing
NPE would even enhance the latter.
As was shown in Figure 14 the N2LO NNPDF 3.0 leads to a suppression, compared to all
other considered PDFs, in exactly this problematic region (0 < qT < 20GeV). Therefore

2 The uncertainty-bands correspond only to scale-variation in this fixed-order dominated region, since F(3,0)

a↵ects only the pure resummed result.
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Combining resummation with fixed-order results (“matching”) 
yields some of the most precise collider physics predictions 
available.

ln
q2T
M2

Z

Two numbers are not known to this accuracy: γ3cusp and d3; estimate their effect.*



Matching
• Resummation: includes 

logs at low qT, neglects qT
2/

MZ
2
 at high qT 

• Fixed order: good at large 
qT, but large logs at small 
qT. 

• Matched result: the best of 
both worlds. 
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Important goal: extend higher-log resummation to 
more and more exclusive observables!



Side remark: Higgs cross section

• Theory predictions by different groups are consistent 
• Can change normalization (i.e. consider spectrum instead of σ) to 

get better agreement at higher qT but then have larger disagreement 
in lowest bin.

• Result from CuTe 2.0 TB 
Luebbert, Neubert, 
Wilhelm, to appear.  

• Other codes: HRes Catani, 
Grazzini et al.; ResBos 
Balasz, Nadolsky, Yuan et 
al. ; Neill, Rothstein, Vaidya 
‘15

much smaller value of the strong coupling, which reduces the cross section above the peak,
even in the not-normalized spectrum, and secondly the normalization, due to the ↵s and nf

enhanced intercept- and peak-region. Even with large NPE, as we used ⇤
NP

= 0.35GeV, we
are not able to compensate for this enhancement in the region of small transverse-momenta.
It follows that we can not recommend to use this fixed-flavour scheme PDF for the calculation
of this kind of spectra, but it would be interesting to see the results of an fixed-flavour scheme
PDF with an ↵s(MZ) value comparable to 0.118 .

To conclude this subsection, we can state that our predictions match the experimental
results remarkably well (Figure 19), especially in the important peak-region and the intercept,
due to the improved PC and the enhanced-NPE[cite again?]. Nevertheless it could be further
improved. By extending the resummation to higher-twist operators and using the true values
of the unknown coe�cients �

(3)

and F
(3,0), we could further reduce our uncertainty and the

deviation in the region of 20GeV < qT < 60GeV. Furthermore would the inclusion of the
Z/�⇤ interference and complete calculation of the leptonic-decay improve our results at larger
transverse-momenta, especially when experimental cuts are involved, as the analysis of Figure 20
has shown.
[word about di↵erent PDFs]

4.3 Higgs-boson transverse-momentum distribution

Figure 23: Comparison of the ✏5 N3LLe
p+N2LO prediction using the fixed-flavour HERA 15

PDF-set to experimental data from ATLAS [25]. Deviation w.r.t. the centre value of our pre-
diction. The right-hand side shows the two distributions normalized by corresponding integral
between 20GeV and 200GeV.

In Figure 23 we finally show a comparison of our Higgs prediction to experimental results
published by ATLAS [25], with a centre-of-mass energy of 8TeV and an integrated luminosity
of 20.3 1/fb.
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A veto on jets                                                  is used to 
suppress top background, in particular in processes 
involving W-bosons, e.g. in 

pp → W+ W− , pp → H  →  W+ W− , etc.  

→ Large Sudakov logarithms

A lot of work on their resummation, both in QCD and SCET:  

• Higgs: Banfi, Salam, Zanderighi ’12; + Monni ’12; TB, Neubert ’12 + 
Rothen ’13; Tackmann, Walsh, Zuberi ’12 + Stewart ’13; Liu Petriello ’13; 
+ Boughezal, Tackmann and Walsh ’14; Banfi et al. ‘15 

• W+ W− : Jaiswal, Okui ’14; Monni, Zanderighi ’14; TB, Frederix, Neubert, 
Rothen ’14; Jaiswal, Meade, Ramani ’15
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Cross sections with a jet veto



Higgs cross section with a jet veto

• Includes N3LO total rate and NNLO H+j results 
• LL resummation of logarithms of the jet radius R 
• quark-mass effects 
• Consistent combination with predictions for H+1-jet and H+2-jet rates.
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Figure 6. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-
pared to NNLO+NNLL (left) and fixed-order at N3LO (right).

LHC 13 TeV ✏N
3LO+NNLL+LL

R

⌃

N3LO+NNLL+LL
R

0-jet [pb] ⌃

N3LO
0-jet ⌃

NNLO+NNLL
0-jet

pt,veto = 25GeV 0.539+0.017
�0.008 24.7+0.8

�1.0 24.3+0.5
�1.0 24.6+2.6

�3.8

pt,veto = 30GeV 0.608+0.016
�0.007 27.9+0.7

�1.1 27.5+0.5
�1.1 27.7+2.9

�4.0

Table 2. Predictions for the jet-veto efficiency and cross section at N3LO+NNLL+LLR, compared
to the N3LO and NNLO+NNLL cross sections. The uncertainty in the fixed-order prediction is
obtained using the JVE method. All numbers include the effect of top and bottom quark masses,
treated as described in the text, and are for a central scale µ

0

= mH/2.

The right-hand plot of Fig. 7 shows our best prediction with uncertainty obtained
with the JVE method, compared to the case of just scale (i.e. µR, µF , Q) variations. We
observe a comparable uncertainty both at small and at large transverse momentum, which
indicates that the JVE method is not overly conservative in the tail of the distribution. We
have observed that the same features persist for the corresponding differential distribution.
Table 3 contains the predictions for the inclusive one-jet cross section for two characteristic
pt,min choices.

4 Conclusions

In this article we have presented new state-of-the-art, N3LO+NNLL+LLR, predictions for
the jet-veto efficiency and the zero-jet cross section in gluon-fusion induced Higgs produc-
tion, as well as NNLO+NNLL+LLR results for the inclusive one-jet cross section. The
results, shown for 13 TeV LHC collisions, incorporate recent advances in the fixed-order
calculation of the total cross section [8], the fixed-order calculation of the one-jet cross sec-
tion [9–11] and the resummation of small-R effects [12]. They also include the earlier NNLL

– 15 –

Banfi, Caola, Dreyer, Monni, Salam, Zanderighi and Dulat ‘15



Soft-collinear fixed-order computations
• Expansion around soft and collinear limit simplifies fixed-order 

computations 
• Approximate higher-order results 

• soft-gluon resummation  
• N3LO Higgs cross section was computed as a high-order 

expansion around soft limit Anastasiou et al. ‘15 
• Slicing methods at NNLO: use expanded NNLO results near 

singular limit, NLO computation away from it.  
• qT subtraction Catani, Grazzini ‘07  

• N-jettiness subtraction, Boughezal, Focke, Liu Petriello 
’15; Gaunt, Stahlhofen, Tackmann, Walsh ‘15 

• Need fixed-order computations of H, B, J, S as inputs! 



Automated resummation



Higher-log resummations (in SCET or in QCD) are usually 
carried out analytically, on a case-to-case basis. Notable 
exceptions: CAESAR Banfi, Salam, Zanderighi ‘04, ARES 
Banfi, McAslan, Monni, Zanderighi ‘14 

• Inefficient and error prone 

In contrast, LO and NLO computations have been 
completely automated over the past years. These codes 
can be used as a basis to perform resummation: 

• Large logarithms arise near Born-level kinematics. Can 
reweight LO events to achieve resummation. 

• Can use NLO codes to compute ingredients for the 
resummation: hard function, jet and soft functions
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Figure 1: Structure and kinematics of the factorization theorem for the W+W� production
cross section in the presence of a jet veto.

Before writing out the factorization theorem in more detail, let us specify the kinematics
of the process at low pvetoT . The momenta of the incoming protons are p1 and p2. The partons
emerging from the parton distribution functions (PDFs) carry momenta z1p1 and z2p2. After
possible emissions (described by the beam functions B̄i), the momenta ⇠1p1 and ⇠2p2 are left
to produce the boson pair through a hard interaction Hij. In the limit of small transverse
momenta we can neglect recoil e↵ects, so that the partons are still collinear to the proton
momentum after the emissions. We define

ŝ = (q1 + q2)
2 = (⇠1p1 + ⇠2p2)

2 = Q2 , t̂ = (⇠1p1 � q1)
2 , û = (⇠1p1 � q2)

2 , (1)

with ŝ + t̂ + û = 2M2
W . Note that our definition of the variable ŝ di↵ers from the standard

choice (z1p1 + z2p2)2. The quantity ŝ we define is the one relevant for the boson production
process, i.e. the one that enters the hard function. In the small transverse-momentum limit
of the emissions, we obtain

⇠1 =
n̄ · q
n̄ · p1

=
Qp
s
e�y ) ⇠1p1 = (n̄ · q) n

2

⇠2 =
n · q
n · p2

=
Qp
s
ey ) ⇠2p2 = (n · q) n̄

2
,

(2)

where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,�1) are two light-cone vectors in the beam directions,
y denotes the rapidity of q = q1 + q2 in the laboratory frame, and s = (p1 + p2)2. The crucial
feature of (2) is that it shows that one can obtain the arguments of the hard function directly
from the vector-boson (and proton) kinematics. The same is true for an arbitrary electroweak
final state.

At low pvetoT , the di↵erential cross section in the presence of a jet veto has the factorized
form [8, 9]

d3�(pvetoT )

dy dQ2 dt̂
=

X

i,j=g,q,q̄

�0
ij(Q

2, t̂, µ)Pij(Q
2, t̂, pvetoT , µ) B̄i(⇠1, p

veto
T ) B̄j(⇠2, p

veto
T ) . (3)

3

Factorization theorem for σ(pT
veto)

Beam functions B(pTveto) 
• real emission with veto. 

perturbative part ⊗ PDF 
• process independent

Hard functions H(Q) 
• virtual corrections, 

standard QCD loops 
• process dependent

Born-level kinematics for small pTveto

TB, Neubert ’12 + Rothen ‘13

B1 B2



Automated resummation based on MG5_aMC@NLO

Beam functions B(pTveto) 
• compute once and for all; 

tabulate using PDF grids

Hard functions H(Q) 
• from automated one-loop 

computation

Reweight Madgraph Born-level events to obtain NNLL resummed 
cross sections. Use aMC@NLO to compute matching.
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Figure 1: Structure and kinematics of the factorization theorem for the W+W� production
cross section in the presence of a jet veto.

Before writing out the factorization theorem in more detail, let us specify the kinematics
of the process at low pvetoT . The momenta of the incoming protons are p1 and p2. The partons
emerging from the parton distribution functions (PDFs) carry momenta z1p1 and z2p2. After
possible emissions (described by the beam functions B̄i), the momenta ⇠1p1 and ⇠2p2 are left
to produce the boson pair through a hard interaction Hij. In the limit of small transverse
momenta we can neglect recoil e↵ects, so that the partons are still collinear to the proton
momentum after the emissions. We define

ŝ = (q1 + q2)
2 = (⇠1p1 + ⇠2p2)

2 = Q2 , t̂ = (⇠1p1 � q1)
2 , û = (⇠1p1 � q2)

2 , (1)

with ŝ + t̂ + û = 2M2
W . Note that our definition of the variable ŝ di↵ers from the standard

choice (z1p1 + z2p2)2. The quantity ŝ we define is the one relevant for the boson production
process, i.e. the one that enters the hard function. In the small transverse-momentum limit
of the emissions, we obtain

⇠1 =
n̄ · q
n̄ · p1

=
Qp
s
e�y ) ⇠1p1 = (n̄ · q) n

2

⇠2 =
n · q
n · p2

=
Qp
s
ey ) ⇠2p2 = (n · q) n̄

2
,

(2)

where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,�1) are two light-cone vectors in the beam directions,
y denotes the rapidity of q = q1 + q2 in the laboratory frame, and s = (p1 + p2)2. The crucial
feature of (2) is that it shows that one can obtain the arguments of the hard function directly
from the vector-boson (and proton) kinematics. The same is true for an arbitrary electroweak
final state.

At low pvetoT , the di↵erential cross section in the presence of a jet veto has the factorized
form [8, 9]

d3�(pvetoT )

dy dQ2 dt̂
=

X

i,j=g,q,q̄

�0
ij(Q

2, t̂, µ)Pij(Q
2, t̂, pvetoT , µ) B̄i(⇠1, p

veto
T ) B̄j(⇠2, p

veto
T ) . (3)

3

B1 B2
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• For NLO result we vary pTveto/2 < μ < 2Q. 
• NNLL+NLO is close to NLO at μ = Q
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Figure 6: Resummed and matched predictions for the cross sections for Z, W+W�, and
W+W�W± production, compared with NLO fixed-order predictions. The lower panels show
the ratio of the cross section to the default NLO value with scale choice µ = Q.

would give an uncertainty that is twice as large. On the other hand, we have checked that
the known NNLO corrections for Z-boson production are indeed compatible with our small
uncertainty band. It is also interesting to note that for W+W� production the scale uncer-
tainties of the fixed-order prediction obtained from correlated and independent variations of
µr and µf are found to be of similar size.

We also observe that the scale uncertainties of the fixed-order NLO predictions at small
pvetoT values strongly increase with the number of produced bosons. This is not surprising if
we consider the relevant scale ratio Q̃/pvetoT , which governs the size of Sudakov logarithms.
Using the median value Q̃ of the invariant-mass distribution to estimate the hard scale, we
find Q̃ = MZ for Z production, Q̃ ⇡ 2.8MW for W+W� production, and Q̃ = 5.7MW for
W+W�W± production. In all cases, the three-momenta at which the bosons are produced
scale with the boson mass, but the average scale increases with the number of the produced
bosons. Note that after the resummation of Sudakov logarithms has been performed, the
width of the uncertainty bands is only weakly dependent on the veto scale.

The relative perturbative uncertainty of our NNLL+NLO prediction for the W+W� pro-
duction cross section at pvetoT = 25GeV is +3.9%

�3.0%. It was advocated in [46] that taking the ratio
of the W+W� and Z-boson production cross sections might be a good way to reduce the
uncertainty in the prediction of the jet-veto cross sections. This proposal was adopted in the
experimental analysis reported in [14]. We have thus studied this cross-section ratio in some
detail. We find that the relative uncertainty in the cross-section ratio is +5.2%

�2.8%, which is even
slightly larger than the uncertainty in the W+W� production cross section itself. This makes
it clear that taking the cross-section ratio does not help reducing the perturbative uncertain-
ties, the reason being that the scale uncertainties are much smaller for Z-boson production
than for W+W� production. Even though the beam functions are the same in both cases, the
cross sections involve di↵erent hard functions and RG evolution factors, which spoils the can-
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Automated NNLL+NLO is implemented in 
Madgraph5_aMC@NLO 2.3 (set ickkw=-1)



Important advantage:

Straightforward to include the decay of the vector bosons and cuts 
on the final state leptons. 

Decays and Cuts

e+e� ! �⇤(q) ! 2 jets
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Figure 8: Resummed and matched predictions for the pp ! W+W�+X ! e+e�⌫⌫̄+X cross
section with the cuts on the leptonic final state described in the text.

thus needs to be treated as a photon jet, or more precisely a photon surrounded by some
hadronic radiation. In fact, many photon-isolation requirements necessitate fragmentation
functions. This can be avoided using the photon isolation proposed by Frixione [47], but also
in this case the photon has a partonic content and a proper description needs to take into
account partons emitted collinear to the photon. This implies that our factorization theorem
does not apply, since it assumes that all energetic radiation is collinear to the beam. The
photon isolation introduces new small scales to the problem (e.g. the hadronic energy around
the photon), which give rise to additional large logarithms not associated with the jet veto.

It is nevertheless interesting to see what happens when we apply our resummation scheme
to a process involving photons. To this end, we consider W±� production using the same setup
as before (

p
s = 7TeV, R = 0.4, nf = 4) and imposing the isolation requirement proposed

in [47], with associated parameters R�
0 = 0.4, xn = 1.0 and ✏� = 1.0. The corresponding results

are shown in Figure 9. The pp ! W� process su↵ers from very large NLO corrections (the
LO results are similar to the NLL result). The resummed results, on the other hand, are not
very di↵erent from the LO predictions, so that the matching corrections are huge, indicating
that there are indeed other sources of large corrections in this process. Likely these arise due
to Sudakov e↵ects associated with photon isolation. However, even the logarithms associated
with the jet veto have a more complicated structure once a process involves partons collinear
to the photon directions, which becomes possible at NLO. It would be interesting to analyze
such photon processes in the context of SCET. In its present implementation our method does
not resum all large corrections in these cases.
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Extension to other observables
Same technique for automated resummation can also be used for more 
general observables. Complications: 

• Nontrivial color structure  

• Hard function at tree level: Farhi, Feige, Freytsis, Schwartz ’15 have 
modified Madgraph to provide color information. Automated NLL 
resummation for two-jet observables 

• Soft function:  Gerwick, Schumann, Höche, Marzani ‘15 have 
automated color structure and NLL evolution in Sherpa.   

• Loops: Broggio + GoSam modified GoSam so that it provides color 
and imaginary part of one-loop amplitudes. 

• NNLL needs automated computations of one-loop beam, jet, and soft 
functions, two-loop anomalous dimensions.  

• Restriction to global observables: only a very limited class of 
observables (e.g. event shapes) can be resummed. 

• so far no complete higher-log resummations for actual jet cross 
sections 



Two-loop anomalous dimensions: universality

• RG invariance, universality and known result for hard-function 
anomalous dimensions fixes all two-loop ingredients up to 
two numbers.  

• These can be obtained numerically with small effort from two-
jet soft function or e+e− fixed-order codes. Automation of 
NNLO 2-jet soft function Bell, Rahn and Talbert ’15.
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Using this procedure, we have recently extracted all 
ingredients for transverse thrust 

at NNLL. Numerical implementation for pp→Z+j and  
pp→2j under way.
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FIG. 2. Transverse thrust cross section for e+e� ! dijet (left) and pp ! Z ! e+e� (right), color coding as in Fig. 1. The
fixed-order results are computed with DYNNLO.

present. A comparison of our results with data may shed
some light on the issue of Glauber-gluon e↵ects and help
to clarify their relation to UE e↵ects. A better under-
standing of these e↵ects should also help to assess to
what extent UE e↵ects are mitigated when certain com-
binations of event shapes are used [8]. For this purpose,
⌧? in pp ! e+e� shown here is particularly useful, since
it is one of the simplest processes that is a↵ected by UE
e↵ects. It would thus be interesting to have precise LHC
data for it and to carefully compare with our results.
Once the UE is better understood, one could construct
a combination of event shapes that is as insensitive to
it as possible to obtain a novel determination of ↵s at
much higher energies than what has been done before
with leptonic event shapes.
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Next-to-next-to-leading logarithmic resummation for transverse thrust
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We obtain a prediction for the hadron-collider event-shape variable transverse thrust in which
the terms enhanced in the dijet limit are resummed to next-to-next-to-leading logarithmic accuracy.
Our method exploits universality properties made manifest in the factorized expression for the cross
section and only requires one-loop calculations. The necessary two-loop ingredients are extracted
using known results and existing numerical codes. Our technique is general and applicable to other
observables as well.

PACS numbers: 12.38.Cy, 13.66.Bc, 13.85.-t, 13.87.Ce

Event-shape variables are an important tool to charac-
terize QCD e↵ects at colliders. They are designed to mea-
sure geometrical properties of energy flow in collisions
and provide information about the distribution of parti-
cles in the final state. Due to their inclusive nature, they
can be computed perturbatively and have only mild sen-
sitivity to hadronisation e↵ects. Such observables were
among the first proposed to test QCD and can also help in
discriminating new-physics e↵ects against the Standard-
Model background. Traditionally event shapes have been
mostly used in leptonic collisions, but they are also of
great interest in the richer environment of hadronic col-
lisions. There is, for instance, a lot of recent work using
event shapes as a tool to study jet substructure, and they
can also be instrumental in improving our knowledge of
some poorly understood aspects of hadronic collisions,
such as underlying-event (UE) e↵ects. In this Letter, we
provide results for the archetypical hadron-collider event-
shape variable, transverse thrust, at an unprecedented
level of accuracy.

A large class of dijet event shapes for hadronic colli-
sions was defined in Refs. [1, 2], using only momentum
components ~p? transverse to the beam direction, in or-
der to reduce sensitivity to the beam remnants. We will
denote a generic transverse event-shape variable by e?.
The classic example is e? = ⌧? = 1 � T?, where the
transverse thrust T? is defined as

T? := max
~n?

P
m |~pm? · ~n?|P

m |~pm?| . (1)

The sums run over final-state particles m. Transverse
thrust has been measured at the LHC [3–7] and previ-
ously also at the Tevatron [8]. In the dijet limit e? ! 0,
higher-order terms enhanced by logarithms of e? need to
be resummed in order to obtain reliable theoretical pre-
dictions. This resummation was performed at next-to-
leading logarithmic (NLL) accuracy in Refs. [1, 2] within
an automated framework [9] (for leptonic collisions this
was recently extended to next-to-next-to-leading loga-
rithmic (N2LL) accuracy in Ref. [10]).

In Ref. [11] we performed an analysis of transverse

thrust within the framework of Soft Collinear E↵ective
Theory (SCET) [12–14] (see Ref. [15] for a review) and
obtained a factorized expression for the cross section that
permits resummation of terms enhanced in the dijet limit
to arbitrary accuracy. For a generic e? the factorization
formula can be written as (⌦ denotes a convolution)

d�

de?
=

X

a,b,i,j

P ab!ij
IJ ⌦ Sab!ij

JI ⌦ Ji ⌦ Jj ⌦Ba ⌦Bb , (2)

where the sum runs over di↵erent partonic channels.
Here and below, the letters a and b denote initial-state
partons and i and j final-state ones. In the above equa-
tion, the factor P ab!ij

IJ encodes e↵ects at the hard scat-
tering scale Q. It includes two parts: a hard function
Hab!ij

IJ and a so-called collinear-anomaly term, which
involves hard-scale e↵ects related to large rapidity di↵er-
ences among emitted particles. Sab!ij

JI is the soft func-
tion, encoding e↵ects of lower-energy soft radiation; it is
contracted with the hard function via the color indices
I and J . The jet and beam functions Ji and Ba encode
the collinear radiation of the final- and initial-state parti-
cles, respectively; the latter also contain the usual parton
distribution functions (PDFs).
We provided all ingredients of the factorization for-

mula for ⌧? at one-loop accuracy in Ref. [11]. However,
to achieve N2LL accuracy, one also needs their two-loop
anomalous dimensions and the two-loop result for the
collinear anomaly. In the present Letter, we determine
these ingredients and achieve, for the first time, N2LL ac-
curacy for a transverse event shape. By fully exploiting
universality properties of Eq. (2), we manage to extract
the missing ingredients from simple numerical computa-
tions. Since the same properties hold for any observ-
able e?, our method can be used to obtain N2LL ac-
curacy for other hadron-collider observables. Combined
with numerical one-loop computations of the relevant jet,
soft and beam functions, one could thus obtain an au-
tomated e↵ective-field-theory based N2LL resummation
framework for hadron-collider event-shapes. Our results
therefore open the door to many new studies, and sev-
eral interesting applications are envisaged, as will be dis-
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From SCET to Jet Effective Theory

resummation for jet processes
TB, Neubert, Rothen, Shao, arXiv:1508.06645



Non-global logarithms

Consider hemisphere jet masses M1 and M2 in             
e+e− → 2 jets. Factorization and resummation works for  
                            Mh = max(M1, M2) 
but fails for the non-global observables 
                                 M = M1   

Nonglobal, because they only probe one hemisphere.
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Jet cross sections are an important example of non-
global observables. Consider, for example narrow cone 
jets (Sterman-Weinberg jets ‘77) 

   
contains large logarithms ln(δ) and ln(β).  

Non-global because the cross section does not change 
under emissions inside the jets. 

Complicated pattern of logarithms not captured by        
H J1 J2 S (no exponentiation!).

Cone-jet cross sections

δ � =
E

out

E
in



A lot of work on these types of logarithms 

• Equations for resummation of leading logs, at large Nc Banfi, 
Marchesini, Smye ’02 (BMS equation), and beyond  Weigert ’03, 
Hatta, Ueda ’13 + Hagiwara ’15; Caron-Huot ’15. 

• Fixed-order results: 2 loops for S(ωL,ωR). Kelley, Schwartz, 
Schabinger and Zhu ’11; Hornig, Lee, Stewart, Walsh and Zuberi 
’11; Kelley; with jet-cone  Kelley, Schwartz, Schabinger and Zhu 
‘11; von Manteuffel, Schabinger and Zhu ’13, leading non-global 
log up to 5 loops by solving BMS equation Schwartz, Zhu ’14, 5 
loops and arbitrary Nc Delenda, Khelifa-Kerfa ‘15 

• Approximate resummation of such logs, based on resummation 
for observables with n soft subjets. Larkoski, Moult and Neill ‘15 

A systematic factorization of non-global observables was missing.

Non-global logarithms



Soft factorization

Large-angle soft radiation only sees total charge. Identical to 
radiation of a single particle flying in the jet direction. 

• Emissions have the same structure as the ones of a classical 
source (with the total charge of the jet) moving along the jet 
direction: Wilson line along jet direction. 

• This simple factorization is a cornerstone of standard 
factorization theorems.



Soft emission from a jet
Consider the emission of single soft a gluon from 
energetic particles with momenta pi inside a narrow jet: 

  

This approximation breaks down when the soft 
emission has a small angle, i.e. when                  !  
Small region of phase space, but gives a leading 
contribution to jet rates!

∑

i

Qi

pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)∑

i

Qi
pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)

p
µ
i ≈ Ei n

µ (2)Approximation:

kµ ⇡ ! nµ



Coft factorization

For cone-jet processes with narrow cones, small angle soft 
radiation becomes relevant 

• collinear and soft  (“coft”) 

• resolves individual collinear partons: operators with 
multiple Wilson lines

TB, Neubert, Rothen, Shao,1508.06645



Momentum modes for jet processes

Full jet cross section is recovered after adding the contributions 
from all regions (“method of regions”) 

• Additional coft mode has very low characteristic scale βδQ! 
Jets are less perturbative than they seem! 

• Effective field theory has additional “coft” degree of freedom.

Region Energy Angle Inv. Mass

Hard Q 1 Q

Collinear Q δ Qδ

Soft βQ 1 βQ

Coft βQ δ βδQ

(

st
an

da
rd

 
SC

ET

new

TB, Neubert, Rothen, Shao,1508.06645; Chien, Hornig and Lee 1509.04287 



Checks at  one and two loops

Constant c0 depends on definition of jet axis: 
                                                        (Sterman-Weinberg)       
                                                        (thrust axis) 

We have therefore shortened their name to “coft”. The coft modes can be inside or outside

the jet and their natural scale is
p
p2t = Q��, much lower than the collinear scale Q� and

soft scale Q�. Given these scalings, we can now write down the expanded phase-space

constraint for the jet cross section. Including the momentum conservation delta function,

the expanded phase-space constraint reads

2�(Q� n̄ ·pXc) �
d�2(p?Xc

)�(Q�n ·pXc̄) �
d�2(p?Xc̄

)✓(�Q�2EXs � n̄ ·pXout

t
�n ·pXout

¯t
) , (2.7)

together with angle constraints. There are separate constraints on the transverse momen-

tum in each hemisphere, which ensures that ~n is indeed the thrust axis, see e.g. [10]. Note

that soft and coft momenta are not constrained by momentum conservation since they

are parametrically smaller than the collinear momenta As discussed above, the collinear

particles are all inside the right jet, while the coft particles can be inside or outside the jet.

For a partition of the coft final state Xt = X in +Xout, the angle constraint reads

Y

i2Xout

✓

✓
n · pi
n̄ · pi � �2

◆ Y

i2Xin

✓

✓
�2 � n · pi

n̄ · pi

◆
. (2.8)

The full phase-space then includes a sum over the di↵erent partitions Xt = X in + Xout.

The angle constraints for the anti-collinear and anti-coft particles are obtained by switching

n $ n̄. There are no angle constraints on the soft particles since the theta functions

constraining them to be outside are trivially fulfilled after multipole expansion, see (2.5).

It is now a simple exercise to verify that one reproduces the one-loop thrust cone-jet

rate by expanding the e+e� ! q̄qg cross section in the above momentum regions, perform-

ing the phase-space integrals in each region, and adding up the resulting contributions.

After changing the angle constraints appropriately, one also obtains the Sterman-Weinberg

cross section. The soft and collinear matrix elements can be found in [9], and the coft

matrix element is equal to the soft one at this order. Integrating over the gluon phase

space yields the following result for the one-loop corrections from the di↵erent sectors
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where �0 is the Born-level cross section. For Sterman-Weinberg jets c0 = �3⇡2 +26, while

thrust-axis cone jets have c0 = �5⇡2/3 + 14 + 12 ln 2. As it has to be the case, in the sum

of the contributions, the divergences and scale dependence cancel and we reproduce the

full QCD result [2].
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Have repeated the same check at two-loop order and checked 
against numerical result from Event 2 generator



Coft functions with 
m Wilson lines

First all-order factorization theorem for non-global 
observable. Achieves full scale separation!

Factorization for two-jet cross section

Soft function

Hard function

3

k

p1

+

FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc

)
∏

i θ(δ
2n̄·pic−n·pic) ,

(11)

Jet functions with m partons 
at fixed direction

integration over angles
color traceLaplace space 

τ ↔ β

TB, Neubert, Rothen, Shao, arXiv:1508.06645



Resummation by RG evolution
Wilson coefficients fulfill renormalization 
group (RG) equations, e.g.  

1. Compute Jm at a their characteristic 
high scale µh ~ Qδ  

2. Evolve Jm to the scale of low energy 
physics µl ~ Qδβ  

Avoids large logarithms αsn lnn(β) of scale 
ratios which can spoil convergence of 
perturbation theory.

R
G

 evolution
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NLL resummation
Need tree-level matrix elements 
                                    ;                ,       

and one-loop anomalous dimensions 

Challenging to solve!  
• Order-by-order structure similar to parton shower. 
• Reproduces BMS equation in large NC limit 
• Close connection to functional RG by Caron-Huot ‘15
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Summary
• Resummed computations for collider processes can provide very 

precise predictions, but are only available for few observables. 

• A lot of recent progress to extend higher-log resummation to more 
observables 

• Automated resummations 

• Factorization for non-global observables 

• Other hot topics, not covered in my talk 

• Role of Glauber gluons? Factorization in their presence? Gaunt 
’14; Zeng ’15; Rothstein, Stewart ‘? 

• Factorization and resummation for power corrections. Bonocore, 
Laenen, Magnea, Vernazza and White ’14 + Melville ’14; Larkoski 
’14, + Neill and Stewart ‘14, Kolodrubetz, Moult and Stewart ‘15



Extra slides



PDF choice in qT spectra

intercept-region. And secondly the di↵erent running of ↵s which has a large impact on the
Higgs cross section.
This impact is also displayed in the bottom plots, by the use of di↵erent ↵s(MZ) values. The
peak-height is almost una↵ected by ↵s for both bosons. In the intercept-region the impact on
Z-production is larger, than on higgs-production due to the smaller q⇤ value. In the tail-region
it is the other way around, here the strong dependance of the Higgs-spectrum on ↵s reveals
itself. The deviations to our standard value reach up to 6% or three times the PDF-uncertainty,
still growing at 60GeV, while the deviations to the Z-boson distribution are bound to 4% or
two times the PDF-uncertainty, already declining at 20GeV.

Figure 14: Comparison of di↵erent N2LO PDF-sets to NNPDF 3.0, using similar (top) and
di↵erent (bottom) ↵s values and flavour-schemes (ABM 12). Deviation w.r.t. NNPDF 3.0 with
↵s(MZ) = 0.118.

In Figure 14 we compare the deviation of di↵erent N2LO PDF sets to N2LO NNPDF 3.0.
The top plots show sets with almost the same values of the strong coupling (see Table 2 for an
overview). In Higgs-production (top-left) the results are overall compatible within the scale-
and PDF-uncertainties. The MMHT 2014 and CT 10 sets seem to fit better to the NNPDF 3.0
set, than its predecessor NNPDF 2.3, while it is the other way around in Z-production (top-
right). Here the deviations to NNPDF 3.0 are larger especially for small transverse-momenta.
While they are still compatible to each other, it is outstanding that the NNPDF 3.0 results are
smaller than every other considered spectrum.
The MSTW 2008 [30] and HERA 15 sets in the plots below, whose ↵s values deviate only a bit,
lead to a similar picture. The ABM 12 set, on the other hand, strongly deviates. Above 10GeV
only in Higgs-production, which is probably the result of di↵erent quark-PDFs, combined with
the much smaller strong-coupling. The strong enhancement in both processes below 5GeV is
a result of the fixed flavour-scheme. The non-vanishing bottom-quark PDF �b/N itself is only
responsible for a small contribution to this deviation. The major e↵ect orginitates from the
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Higgs qT : individual uncertainties
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