

The University of Manchester

Flavour Physics: CP Violation

Silvia Borghi on behalf of

Aspen, 14th January 2016

Outline

- Introduction
- CP violation and CKM physics:
 - Measurement of $|V_{ub}|$ on $\Lambda^0_b \rightarrow p\mu^- \overline{\nu}_{\mu}$
 - Measurement of $|V_{cb}|$ on $B \rightarrow D \ell v$
 - Determination of CKM γ angle
 - $sin(2\beta)$ from $B^0 \rightarrow J/\psi K^0_S$ and $B^0 \rightarrow D^{(*)}_{CP}h^0$ decays
 - Measurement of the CP-violating weak phase φ_s
 - CP violation in B mixing
- Mixing and CPV in the charm sector
 - Mixing in $D^0 \rightarrow K^0_{\ S} \pi^+ \pi^-$ decays
 - Search of CPV in D⁰→K⁰_SK⁰_S
 - Mixing and search of indirect CPV in D⁰→h⁻h⁺
 - Measurement of $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^-K^+) A_{CP}(D^0 \rightarrow \pi^-\pi^+)$
- Conclusions

Review based on new

2015 results

- In the search for physics beyond the SM, the study of beauty and charm hadron decays is complementary to direct searches for new particles
- Can discover NP due to the effect of virtual new particles in quantum loops
- NP could introduce sizeable effects in flavour changing processes and modify the Yukawa interactions
- Through the study of the interference of different quantum paths
 access to the magnitude of the couplings of NP and also to their phase (for instance, by measuring CP asymmetries).
- Precision measurements of FCNC can reveal NP even well above the TeV scale and provide key information on the couplings and phases of these new particles, if they are visible at the TeV scale

- Weak interaction couples quarks through elements of the CKM mixing matrix
 - each element V_{ij} (i=u,c,t and j=d, s, b) quantify the relative i \leftrightarrow j coupling strength.
- Precise measurements of the magnitudes and phases of the CKM elements provide constraints on many possible scenarios for physics BSM
- Its elements can be expressed in terms of 4 independent parameters

- Weak interaction couples quarks through elements of the CKM mixing matrix
 - each element V_{ij} (i=u,c,t and j=d, s, b) quantify the relative i \leftrightarrow j coupling strength.
- Precise measurements of the magnitudes and phases of the CKM elements provide constraints on many possible scenarios for physics BSM
- Its elements can be expressed in terms of 4 independent parameters: λ, A, ρ, η

$$V_{CKM} = \begin{vmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| e^{-\nu\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| e^{-\nu\beta} & -|V_{ts}| e^{\nu\beta} & |V_{tb}| \end{vmatrix}$$

- > λ , A, ρ , η not predicted by the SM \rightarrow to be measured
- > Complex elements \rightarrow CPV phases: γ , β , β_s
- > Unitarity imposes relations \rightarrow 6 independent unitarity triangles

- If NP enters mainly at loop level → compare the determination of the parameters (ρ, η) from processes dominated by
 - tree diagrams (V_{ub}, V_{cb}, γ,...)

γ(α)

• loop diagrams ($\Delta m_d \& \Delta m_s$, β , ϵ_k ,...)

Tree measurements

6.0

fitter

0.6

B physics results

Measurement of $|V_{ub}|$ on of $\Lambda^0_b \rightarrow p\mu^- \overline{\nu}_{\mu}$

- V_{ub} describes the transition b $\rightarrow u$
- Measured via the semileptonic quark level transition $b \rightarrow u \ell v$
- Two complementary methods to perform the measurement: inclusive and exclusive ways
- World average V_{ub} determined by PDG 2014

 - Inclusive: $b \rightarrow u \ell_{v} : |V_{ub}| = [4.41 \pm 0.15^{+0.15}_{-0.17}] \ 10^{-3}$ Exclusive: $B \rightarrow \pi \ell_{v} : |V_{ub}| = [3.28 \pm 0.29] \ 10^{-3} \rightarrow 3 \sigma \text{ discrepancy}_{W^-}$
- LHCb evaluated the branching fraction of $\Lambda^0_{\ b} \rightarrow p\mu^- \overline{\nu}_{\mu}$

$$\frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})_{q^2 > 7 \,\mathrm{GeV}^2/c^4}} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \frac{G(\Lambda_b^0 \to p\mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{G(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})_{q^2 > 7 \,\mathrm{GeV}^2/c^4}}$$

where the form factor G taken from lattice calculations from [arxiv:1503.01421(hep-lat)]

Measurement of $|V_{ub}|$ on of $\Lambda^0_{\ b} \rightarrow p\mu^- \overline{\nu}_{\mu}$

• Result: $\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 \pm 0.004$

Using the world average |V_{cb}|=[39.5±0.8] 10⁻³ by exclusive decays

 $|V_{ub}| = [3.27 \pm 0.15_{(exp)} \pm 0.16_{(LQCD)} \pm 0.06_{(norm)}]10^{-3}$

- Confirms discrepancy between inclusive and exclusive
- Inconsistent with a significant right handed current

2-3 σ discrepancy

Measurement of $|V_{cb}|$ on $B{\rightarrow}D\mathscr{l}\nu$

- V_{cb} describes the transition $b \rightarrow c$
- Measured via the semileptonic quark level transition b \rightarrow c ℓv
- World average V_{cb}
 - Inclusive: $B \rightarrow X_c \ell v : |V_{cb}| = [42.21 \pm 0.78] \ 10^{-3}$
 - Exclusive: $B \rightarrow D \ell \nu$: $|V_{cb}|$ =[40.0±1.4] 10⁻³ and $B \rightarrow D^* \ell \nu$: $|V_{cb}|$ =[38.94±0.76] 10⁻³
- Recent measurements by Belle on $B \rightarrow D \ell v$
- V_{cb} via differential decay width:

$$\frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \eta_{\rm EW}^2 |V_{\rm cb}|^2 \mathcal{G}(w)^2$$

Kinematics: $w = v_B \cdot v_D$

- For form factor G(w), two parameterisations considered:
 - CLN [Nucl. Phys. B 530, 153 (1998)]
 - BGL [Phys. Rev. Lett. 74, 4603 (1995)]

Belle Measurement of $|V_{cb}|$ on $B \rightarrow D \ell v$

 Using the CLN parameterisation and assuming the value of G(1)=1.0541±0.0083 [arXiv:1503.07237]

$|V_{cb}|\eta_{EW}(CLN)=(40.12\pm1.34) \ 10^{-3}$

 Using the BGL method to perform a combined fit to the model-independent form-factor parameterisation

$|V_{cb}|\eta_{EW}(BGL) = (41.10\pm1.14) \ 10^{-3}$

- Error significantly reduced from previous measurements
- Result is in between inclusive and exclusive results

LHCb: Nature Physics 11 (2015) 743 Belle: arXiv:1510.03657 (submitted to PRD)

Overview of $|V_{ub}|$ and $|V_{cb}|$ measurements

Silvia Borghi

Aspen, 14 January 2016

Determination of CKM γ

- The least well measured phases is $\gamma = -\arg\left(\frac{V_{ud}V_{ub}^*}{V_{ub}V_{ub}^*}\right)$
- Sensitivity to γ from b—u and b—c interference
- Magnitude of the interference is governed by γ , r_B amplitude ratio and δ_B CP-conserving strong phase difference
- Crucial point: D⁰ and D⁰ to decay to same final state

- γ measurements from B[±] \rightarrow DK[±] (r_B~0.1)
 - $B^{\pm} \rightarrow D\pi^{\pm}$ also possible but needed higher statistics ($r_{B} \sim 0.01$)

• Other interesting modes with vector mesons, e.g. $B \rightarrow D^*K$, $\overline{B} \rightarrow D\overline{K^{*0}}$, $B^{\pm} \rightarrow D\phi$ and as well b-baryon decays (e.g. $\Lambda_b \rightarrow D\Lambda$ decays) and other multi-body final states

arXiv: 1505.07044 Submitted to PRD

Determination of CKM γ

- First ADS and GLW analyses of the decay B⁻→D(→hh)h⁻π⁺π⁻
- Global fit for all D →h⁺h⁻ modes gives:

γ =(74⁺²⁰₋₁₈)° at 68.3% CL

- Compatible with the global average published in LHCb-CONF-2014-004
- Contribution to improve the precision on γ from combined measurements

First significant signals in D CP modes First evidence of ADS DCS $B^- \rightarrow D(\rightarrow K^+\pi^-)K^-\pi^+\pi^-$

Phys. Rev. D 91, 112014 (2015)

Determination of CKM γ

- This method uses B[±]→D⁰h[±] decays:
 - ADS channel $D^0 \rightarrow K \pi \pi^0$
 - Quasi-GLW $D^0 \rightarrow \pi \pi \pi^0$ and $D^0 \rightarrow KK\pi^0$ First time!
- Dilution factors measured by CLEO-c [PLB 731(2014) 197] [Phys. Lett. B740 (2015) 1]
- Measured observables by the ratio and asymmetry \rightarrow constraints on γ , r_B and δ_B
- Higher sensitivity compared with the results of BaBar and Belle [Phys. Rev. D84 (2011) 012002, ^{0.} Phys. Rev. D88 (2013) 091104, Phys. Rev. Lett. 99 (2007) 251801]
- No evidence of CPV obtained with the current experimental precision
- The results exhibit good consistency with other LHCb measurements. [LHCb-CONF-2014-004]

Best-fit value $r_B = 0.11 \pm 0.03$ No strong constraints on γ or δ_B with these statistics

Combining y measurements

No update since CKM 2014

MANCH<mark>est</mark>er

- Ultimate theoretical error <10⁻⁷
- Direct measurement, world average:

 $\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$ $r_{\rm B} = (0.097 \pm 0.006)$ $\delta_{\rm B} = (125.4^{+7.0}_{-7.8})^{\circ}$

 Indirect determination from global CKM fit, including loop based measurements

γ**=(66.9**^{+1.0}_{-3.7})^o

sin(2 β) from B⁰ \rightarrow J/ ψ K⁰_S decays at LHCb

- Decay time dependent CP asymmetry between B⁰ and $\overline{B^0}$ in $B^0 \rightarrow J/\psi K^0_S$
- In this decay CPV expected negligible decays

$$\mathcal{A}(t) \equiv \frac{\Gamma(\overline{B}^{0}(t) \to J/\psi K_{\rm s}^{0}) - \Gamma(B^{0}(t) \to J/\psi K_{\rm s}^{0})}{\Gamma(\overline{B}^{0}(t) \to J/\psi K_{\rm s}^{0}) + \Gamma(B^{0}(t) \to J/\psi K_{\rm s}^{0})} + \Gamma(B^{0}(t) \to J/\psi K_{\rm s}^{0})}$$

$$\mathcal{A}(t) = S\sin(\Delta m t) - C\cos(\Delta m t)$$

S ≈ sin(2β) = 0.731 ± 0.035_{stat} ± 0.020_{syst}

- Similar statistical precision as B-factories
- Excellent agreement with expectation from other measurements

MANCHESTER

1824

- B⁰→D^(*)_{CP}h⁰ decays proceed mainly through tree amplitudes
- Penguin free (b→cu
) measurement
- If D decays to CP-eigenstate (K⁻K⁺, K_sπ⁰, K_sω) with h⁰=π⁰, η, ω
- ➔ time dependent CPV can occur via interference with oscillation
- First combined fit to BaBar and Belle data

 $sin(2\beta) = 0.66 \pm 0.10_{stat} \pm 0.006_{syst}$

- 5 σ observation of CPV in this decay mode
- Very good agreement with the world average from B→ charmonium K⁰ decays

MANCHESTER

MANCHESTER 1824

LHCb: Phys. Rev. Lett. 114, 041801 (2015) CMS: arXiv:1507.07527; Submitted to Phys. Lett. B ATLAS: arXiv:1601.03297; Submitted to JHEP

Measurement of the CP-violating weak phase ϕ_{s}

- Angular analysis is needed in B_s→J/ψφ decays, to disentangle statistically the CP-even and CP -odd components.
- LHCb includes also $B_s \rightarrow J/\psi \pi \pi$ [Phys. Lett B736 (2014)186] and even $B_s \rightarrow D_s^* D_s^-$ [Phys. Rev. Lett. 113 (2014) 211801]
- ATLAS and CMS analyses have measured φ_s in B_s→J/ψφ with full Run 1 statistics

B _s →J/ψφ	ATLAS	CMS	LHCb
	arXiv: 1601.03297	arXiv: 1507.07527	PRL 114 (2015) 041801
L (fb ⁻¹)	19	20	3
ϕ_s [mrad]	-98±84±40	-75±97±31	-58±49±6
$\Delta\Gamma_{s}$ [fs-1]	83±11±7	95±13±7	80.5±9.1±3.3

- Combining all measurements
 φ_s=(-34±33) mrad = (-2.01±1.89)°
 - To be compared with the prediction, neglecting penguin contribution: $\varphi_s = (-2.1 \pm 0.1)^\circ$.
- Uncertainty needs to be further reduced for a meaningful comparison

Silvia Borghi

Phys. Rev. Lett. 114 (2015) 081801

CP violation in **B** mixing

- CP violation in dilepton samples from semileptonic *B* decays
- Assuming e-µ universality $A_{CP} = \frac{\mathcal{P}_{\ell\ell}^{++} - \mathcal{P}_{\ell\ell}^{--}}{\mathcal{P}_{\ell\ell}^{++} + \mathcal{P}_{\ell\ell}^{--}} = \frac{1 - |q/p|^4}{1 + |q/p|^4}.$

World average

MANCHESTER

1824

- CPV in B⁰ mixing $|q/p| = 1.0007 \pm 0.0009$ $A_{CP} = (-0.15 \pm 0.17)\%$
 - $|q/p| = 1.0038 \pm 0.0021$

Silvia Borghi

Aspen, 14 January 2016

Mixing and CPV in the charm sector

D⁰ mixing

- D⁰ oscillation is characterized by:
 - mixing parameters: $\chi \equiv \frac{1}{2}$

mass eigenstates:

$$x \equiv \frac{\left(m_2 - m_1\right)}{\Gamma} \text{ and } y \equiv \frac{\left(\Gamma_2 - \Gamma_1\right)}{2\Gamma} \qquad \Gamma \equiv \left(\Gamma_2 + \Gamma_1\right)/2$$
$$\left|D_{1,2}\right\rangle = p \left|D^0\right\rangle \pm q \left|\overline{D}^0\right\rangle$$

- Theoretical expectation: |x|, $|y| \leq O(10^{-2})$
- Experimental status
 - First evidence in 2007 by BaBar and Belle [arXiv:hep-ex/0703020; arXiv:hep-ex/0703036]
 - Mixing well established with more than 10 σ. Most recent and precise measurements at LHCb[PRL 110 (2013) 101802], CDF[PRL 111 (2013) 231802] and Belle [PRL 112 (2014) 111801]

arXiv: 1510.01664 Submitted to JHEP

Mixing in $D^0 \rightarrow K^0_{S} \pi^+ \pi^-$ decays

- Different superposition of amplitudes at each point in phase-space. Interfering amplitudes enhance the sensitivity to mixing
- Time dependent decay rate:

$$\mathcal{P}_{D^0} = \mathrm{e}^{-\Gamma \mathrm{t}} \Big[T_i - \Gamma t \sqrt{T_i T_{-i}} \Big(\mathbf{y} c_i + \mathbf{x} s_i \Big) \Big]$$

- Constrain hadronic parameters (T_i, c_i, s_i) to CLEO measurements [PRD 82 (2010) 112006]
- First model-independent measurement of x and y in $D^0 \rightarrow K^0{}_S \pi^+\pi^-$ decays on 1 fb⁻¹ data sample

 $x = (0.86 \pm 0.53 \pm 0.17) \times 10^{-2}$ $y = (0.03 \pm 0.46 \pm 0.13) \times 10^{-2}$

- Compatible with current world averages (but not yet competitive) with other experiments
- Already collected ~20 time more data for this channel

CP violation in charm

- CP-violating asymmetries in the charm sector provide a unique probe for physics beyond the Standard Model (SM)
- In the SM CP violation is expected to be small
- New Physics can enhance CP violating observables
- CP violation contributions: • In decay: amplitudes for a process and its conjugate differ $\left|\frac{\overline{A_f}}{A_f}\right|^{\pm 2} \approx 1 \pm A_d$ with $A_d \neq 0$ • direct CP violation $a_{CP}^{dir} \approx -\frac{1}{2}A_d$ • In mixing: rate of $\overline{D^0} \rightarrow D^0$ and $D^0 \rightarrow \overline{D^0}$ differ: $\left|\frac{q}{p}\right|^{\pm 2} \approx 1 \pm A_m$ with $A_m \neq 0$ • In interference between mixing and decay diagrams $\phi = \left[\frac{q\overline{A_f}}{pA_f}\right] - \delta \neq 0$ • indirect CP violation $a_{CP}^{ind} = -\frac{A_m}{2}y\cos\phi + x\sin\phi$

JHEP 10 (2015) 055

Search of CPV in $D^0 \rightarrow K^0_S K^0_S$

• Measurement of CP asymmetry

 $A_{RAW}(f)^* = A_{CP}(f) + A_D(f) + A_D(\pi_s) + A_P(D^{*+})$ where the A_D and A_P are of O(1%)

determined by control channels

- Experimentally challenging: vertexing of two (very) long-lived particles
- Results:

A_{CP}=(-2.9±5.2±2.2) 10⁻²

No indication of CP violation

- Single previous measurement from CLEO [PRD 63 (2001) 071101] A_{CP}=(23±19) ×10⁻²
- Significant improvement over previous measurement

Measurement of $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^-K^+) - A_{CP}(D^0 \rightarrow \pi^-\pi^+)$

• The measured asymmetry is:

$A_{\text{RAW}}(f)^* = A_{\text{CP}}(f) + A_{\text{D}}(f) + A_{\text{D}}(\pi_s/\mu) + A_{\text{P}}(D^{*+}/B)$

- Detection asymmetry A_D(f) for self-conjugate final states is usually negligible
- D* or B **production** asymmetries d to be taken into account in pp interaction
- In $A_{RAW}(K^-K^+)^* A_{RAW}(\pi^+\pi^-)^*$ the **production** and **detection** asymmetries cancel: $A_{RAW}(K^-K^+)^* - A_{RAW}(\pi^-\pi^+)^* = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$
- → CP asymmetry difference very robust against systematics

Silvia Borghi

Aspen, 14 January 2016

Measurement of $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^-K^+) - A_{CP}(D^0 \rightarrow \pi^-\pi^+)$

Result with L_{int}=3 fb⁻¹ of full data in Run1:

 $\Delta A_{CP} = (-0.10 \pm 0.08_{stat} \pm 0.03_{sys})$ % Preliminary

Most precise measurement of direct CPV in charm decays

No CPV evidence

→ Consistent with no CP violation at 6.5% C.L.

Looking at the future

EPS 2015

Around 2019

Around 2027

Conclusions

- Very large amount of new results last year
 - Both in b- and c-sector
 - Higher precision measurements
 - New decay modes
- In general the results in good agreement with the SM predictions
- Much more to come in the short and longer terms:
 - Run 2 has just started at LHC (LHCb & ATLAS & CMS)
 - LHCb upgrade & Belle II will take over

The University of Manchester

Thank you!

Backup

LHCb upgrade

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003
	$\phi_s(B^0_s \to J/\psi f_0(980)) \text{ (rad)}$	0.09	0.05	0.016	~ 0.01
	$A_{ m sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S) \text{ (rad)}$	0.30	0.20	0.04	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	0.20	0.13	0.030	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi \gamma)/ au_{B^0_s}$	5%	3.2%	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.14	0.07	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B^0_s \to \mu^+\mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B o D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
triangle	$\gamma(B^0_s ightarrow D^{\mp}_s K^{\pm})$	17°	11°	2.4°	negligible
angles	$eta(B^0 o J/\psi K^0_S)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	-
CP violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.12	-

- Before the upgrade (8 fb⁻¹)
- After the upgrade (50 fb⁻¹)
- Theory uncertainty (as far as we know today)

Silvia Borghi

Aspen, 14 January 2016

Belle II

Observables	Belle	Belle II		\mathcal{L}_s	Obser
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$	
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6	$\mathcal{B}(D_s$
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$		$\mathcal{B}(D_s$
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$		y_{CP} [
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	$>\!50$	$A_{\Gamma} \begin{bmatrix} 1 \\ A^{K^+ F} \end{bmatrix}$
$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	$>\!50$	A_{CP}^{α} $A^{\pi^+\pi^-}$
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44	$A_{CP}^{\phi\gamma}$
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1	$x^{K_S\pi^-}$
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1	$y^{K_S\pi^-}$
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2	$ q/p ^{I}$
$\left V_{ub}\right $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20	$\phi^{K_S\pi^*}$
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3	$A_{CP}^{\pi^0\pi^0}$
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46	$A_{CP}^{K_S\pi}$
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	$>\!50$	Br(L
$R(B\to D\tau\nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4	
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3	
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	$>\!50$	
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	$>\!50$	
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1	
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8	
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50	
$S(B o ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50	
$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10%	5%		
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3			
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2			

Observables	Belle	Bell	le II	\mathcal{L}_s
	(2014)	$5 {\rm ~ab^{-1}}$	50 ab^{-1}	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ - $3.6\%)$	3 - 5
$U_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$c^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$K_{S}\pi^{+}\pi^{-}$ [10 ⁻²]	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$q/p ^{K_S\pi^+\pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$b^{K_S \pi^+ \pi^-} [\circ]$	$-6 \pm 11 \pm rac{4}{5}$	± 6	± 4	10
$4_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

- Soon after startup (5 ab⁻¹)
- By the end of the present programme (50 ab⁻¹)

Physics at Belle II and LHCb upgrade

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	input input input input sin(2 β)	$\begin{array}{c} 0.5\% \rightarrow 0.1\%_{\text{Latt}} \\ 1\% \\ 10\% \rightarrow 5\%_{\text{Latt}} \end{array}$	$\begin{array}{c} 0.2246 \pm 0.0012 \\ (41.54 \pm 0.73) \times 10^{-3} \end{array}$	0.1%	K factory
$ \begin{array}{ll} V_{cb} & [B \rightarrow X_c \ell \nu] \\ V_{cb} & [B \rightarrow \pi \ell \nu] \\ \hline \gamma & [B \rightarrow DK] \\ \hline S_{B_d \rightarrow \psi K} \\ \hline S_{B_s \rightarrow \psi \phi} \\ \hline S_{B_s \rightarrow \psi \phi} \\ \hline S_{B_s \rightarrow \psi \phi} \\ \end{array} $	input input input $\sin(2\beta)$	1% $10\% \rightarrow 5\%_{\text{Latt}}$	$(41.54 \pm 0.73) imes 10^{-3}$	10%	
$ \begin{array}{ll} V_{ub} & [B \rightarrow \pi \ell \nu] \\ \gamma & [B \rightarrow DK] \\ \hline S_{B_d \rightarrow \psi K} \\ S_{B_s \rightarrow \psi \phi} \\ S_{B_s \rightarrow \psi \phi} \end{array} $	input input $sin(2\beta)$	$10\% \rightarrow 5\%_{\rm Latt}$	、 、	1/0	Super-B
$\frac{\gamma \qquad [B \to DK]}{S_{B_d \to \psi K}}$ $\frac{S_{B_d \to \psi K}}{S_{B_s \to \psi \phi}}$	input $\sin(2\beta)$	Late	$(3.38 \pm 0.36) imes 10^{-3}$	4%	Super-B
$S_{B_d \to \psi K}$ $S_{B_s \to \psi \phi}$	$\sin(2\beta)$	$< 1^{\circ}$	$(70^{+27}_{-30})^{\circ}$	3°	LHCb
$S_{B_s \to \psi \phi}$	and the last	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb
Sp	0.036	$\lesssim 0.01$	$0.81^{+0.12}_{-0.32}$	0.01	LHCb
$\Theta B_d \rightarrow \phi K$	$\sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb
$S_{B_s \to \phi \phi}$	0.036	$\lesssim 0.05$	_	0.05	LHCb
$S_{B_d \to K^* \gamma}$	few \times 0.01	0.01	-0.16 ± 0.22	0.03	Super-B
$S_{B_s \to \phi \gamma}$	few \times 0.01	0.01	_	0.05	LHCb
A^d_{SL}	$-5 imes 10^{-4}$	10^{-4}	$-(5.8\pm 3.4) imes 10^{-3}$	10^{-3}	LHCb
A^s_{SL}	$2 imes 10^{-5}$	$< 10^{-5}$	$(1.6\pm 8.5) imes 10^{-3}$	10^{-3}	LHCb
$A_{CP}(b ightarrow s \gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B
$\mathcal{B}(B o au u)$	$1 imes 10^{-4}$	$20\% \to 5\%_{\rm Latt}$	$(1.73\pm0.35) imes10^{-4}$	5%	Super-B
${\cal B}(B o \mu u)$	$4 imes 10^{-7}$	$20\% \to 5\%_{\rm Latt}$	$< 1.3 imes 10^{-6}$	6%	Super-B
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$3 imes 10^{-9}$	$20\% \to 5\%_{\rm Latt}$	$< 5 imes 10^{-8}$	10%	LHCb
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	$1 imes 10^{-10}$	$20\% \to 5\%_{\rm Latt}$	$< 1.5 \times 10^{-8}$	[?]	LHCb
$A_{\rm FB}(B \to K^* \mu^+ \mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb
$B \to K \nu \bar{\nu}$	$4 imes 10^{-6}$	$20\% \to 10\%_{\rm Latt}$	$< 1.4 imes 10^{-5}$	20%	Super-B
$ q/p _{D-\text{mixing}}$	1	$< 10^{-3}$	$(0.86^{+0.18}_{-0.15})$	0.03	Super-B
ϕ_D	0	$< 10^{-3}$	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.5×10^{-11}	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory
$\mathcal{B}(K_L o \pi^0 \nu \bar{\nu})$	2.6×10^{-11}	10%	$<2.6\times10^{-8}$	[?]	K factory
$R^{(e/\mu)}(K o \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498\pm0.014)\times10^{-5}$	0.1%	K factory
${\cal B}(t o c Z, \gamma)$	$\mathcal{O}\left(10^{-13} ight)$	$\mathcal{O}\left(10^{-13}\right)$	$< 0.6 \times 10^{-2}$	$\mathcal{O}\left(10^{-5}\right)$	LHC $(100 {\rm fb}^{-1})$
$B(B \rightarrow Xs\gamma)$ $B(B \rightarrow Xd\gamma)$ $S(B \rightarrow \rho\gamma)$ $B(\tau \rightarrow \mu\gamma)$ $B(B+ \rightarrow D\tau\nu)$ $B(Bs \rightarrow \gamma\gamma)$ $sin2\theta W @ Y(4S)$			0.7	$\begin{array}{c} 6\%\\ 20\%\\ 0.15\\ 3\cdot 10^{-9}\\ 3\%\\ 25\cdot 10^{-6}\\ 3\cdot 10^{-4}\end{array}$	Super-B Super-B Super-B Super-B Super-B Super-B Super-B

Physics at Super B factory: arXiv:1002.5012 arXiv:1008.1541

>Belle II and LHCb will provide complementary information

Adopted from G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

> Super B factory LHCb K experiments

Silvia Borghi

Aspen, 14 January 2016

Phys. Rev. Lett. 115, 121604 (2015)

Measurement of the CP-violating weak phase φ_s

- $\phi_q^{\text{meas}} = \phi_q + \Delta \phi_{\text{penguin}} + \Delta \phi_{\text{BSM}}$
- Measure Δφ_{penguin} in processes where penguin decays are not suppressed B⁰→J/ψh⁰ with h⁰=K^{*0},ρ

$$A \sim -\lambda A_{(i)} \left[1 - a_{(i)}^{\dagger} e^{i\theta_{(i)}} e^{i\gamma} \right]$$

 New results from LHCb, fit for |A'/A| to limit sensitivity to hadronic uncertainties, assuming:

$$\left|A_{(i)}^{'}/A_{i}\right|\left(B_{s}^{0}\rightarrow J/\psi\overline{K^{*0}}\right)=\left|A_{(i)}^{'}/A_{i}\right|\left(B_{d}^{0}\rightarrow J/\psi\rho^{0}\right)$$

- Dominated by the input from the CP asymmetries in B⁰_s→J/ψK^{*0}
- penguin pollution in the determination of φ_s is small
- Compatible with previous results

$$\begin{split} \Delta \phi_{s,0}^{J/\psi\,\phi} &= 0.000^{+0.009}_{-0.011}\,(\text{stat}) \quad {}^{+0.004}_{-0.009}\,(\text{syst})\,\text{rad} \\ \Delta \phi_{s,\parallel}^{J/\psi\,\phi} &= 0.001^{+0.010}_{-0.014}\,(\text{stat})\,\pm 0.008\,(\text{syst})\,\text{rad} \\ \Delta \phi_{s,\perp}^{J/\psi\,\phi} &= 0.003^{+0.010}_{-0.014}\,(\text{stat})\,\pm 0.008\,(\text{syst})\,\text{rad} \end{split}$$