Hard QCD at the LHC

2016 Aspen Winter Conf. Particle Physics "Particle Phys. on the Verge of Discovery?" Aspen (CO), 10th -15th Jan. 2016

David d'Enterria (CERN)

Hard QCD at the LHC: Outline

Introduction. Observables: Jets, (di)photons, W,Z bosons, heavy-Q, Higgs

Data vs. state-of-the-art (N)NLO+(N)NLL pQCD:

(N)NLO PDFs & FFs improvements:

0.2 0.4

0.8 - z

0.2 0.4

0.6

0.6

0.8 Z

(N)NLO QCD coupling extraction:

Hard QCD at the LHC: Outline

Introduction. Observables: Jets, (di)photons, W,Z bosons, heavy-Q, Higgs

Aspen Winter Conf. Particle Phys., Jan'16

3/40

"All" LHC p-p physics "is" QCD physics

Full Quantum Cromodynamics at work :

- (1) Hard scattering (large p_τ,mass): perturbative matrix elements, DGLAP evol., Resummations, Parton Distribution Functions, Fragmentation Functions
- (2) Semi-hard dynamics: Multiparton interactions, Generalized PDFs
- (3) Soft: Beam remnants, diffractive scatterings,...
 - High-precision (experimental & theoretical) studies of QCD are key to understand production of all (B)SM signals & bckgds at the LHC:

"All" LHC p-p physics "is" QCD physics

Full Quantum Cromodynamics at work :

- (1) Hard scattering (large p_T,mass): perturbative matrix elements, DGLAP evol., Resummations, Parton Distribution Functions, Fragmentation Functions
- (2) Semi-hard dynamics: Multiparton interactions, Generalized PDFs
- (3) Soft: Beam remnants, diffractive scatterings,... [Do

[Douglas M Schaefer, Friday]

High-precision (experimental & theoretical) studies of QCD are key to understand production of all (B)SM signals & bckgds at the LHC:

Organization of the talk

What have learned from the hard QCD data at the LHC about...

(SUSY, DM, Z', S(750)...) are affected by such crucial hard QCD ingredients.

David d'Enterria (CERN)

"Master formula" for hard QCD cross sections

Collinear factorization for hard process cross sections in p-p collisions: Convolution of <u>non-perturbative objects</u> + <u>parton-parton matrix elements</u>:

Universal FFs fitted from data + DGLAP evolution

Hard x-sections: Perturbative α_s expansion

Hard cross sections: Soft gluon resummations

Theory calculations with increasing # of real emissions + virtual corrections + soft & collinear log resummations (improves p_τ differential distributions):

Aspen Winter Conf. Particle Phys., Jan'16

David d'Enterria (CERN)

Hard cross sections: Higher-order corrections

Theory calculations with increasing # of real emissions + virtual corrections:
 (i) (usually) increased x-sections, (ii) reduced theoretical uncertainties

 $\sigma(pp \rightarrow Z, \gamma^*)$ at NNLO:

Higgs $\sigma(gg \rightarrow H)$ at N³LO:

Aspen Winter Conf. Particle Phys., Jan'16

David d'Enterria (CERN)

Hard cross-sections: Resummations

 Theory calculations include increasing # of real emissions + virtual corrections: + soft & collinear log resummations: (i) (usually) increased x-sections,
 (ii) reduced theoretical uncertainties, (iii) Improved p_T differential distributions:

 $\sigma(pp \rightarrow ttbar)$ at NNLO+NNLL:

Higgs $d\sigma/dp_{\tau}$ at NNLO+NNLL:

Hard QCD: LHC Data

Wealth of hard QCD data: jets, γ , diphotons

Wealth of hard QCD data: charm, bottom

Aspen Winter Conf. Particle Phys., Jan'16

David d'Enterria (CERN)

Wealth of hard QCD data: W, Z bosons

15/46

David d'Enterria (CERN)

Wealth of hard QCD data: top-pairs

A

Wealth of hard QCD data: Higgs boson

Higher-order & resummations

Total hard cross sections: Data vs. pQCD

NNLO calculations in excellent agreement with all measured total x-sections:

Standard Model Production Cross Section Measurements

Aspen Winter Conf. Particle Phys., Jan'16

David d'Enterria (CERN)

Total hard cross sections: Data vs. pQCD

NNLO calculations in excellent agreement with all measured total x-sections:

Higgs x-sections: Data vs. NNLO+NNLL

 Theory calculations include increasing # of real emissions + virtual corrections + soft & collinear log resummations (improves p_T differential distributions).
 Higgs production is paradigmatic example:

Higgs x-sections: Data vs. NNLO+NNLL

 Theory calculations include increasing # of real emissions + virtual corrections + soft & collinear log resummations (improves p_T differential distributions).
 Higgs production is paradigmatic example:

Decent agreement within still large experimental statistical uncertainties

Diphoton x-sections: Role of NNLO corrections

NLO largely underestimates increasingly collinear γ 's ($\Delta \phi < 2.5$):

Aspen Winter Conf. Particle Phys., Jan'16

23/46

Diphoton x-sections: Role of NNLO corrections

NLO largely underestimates increasingly collinear γ 's ($\Delta \phi < 2.5$):

Cured by latest state-of-the-art NNLO diphoton calculations:

Enhanced NNLO production of collinear γ 's (e.g. qq \rightarrow qq $\gamma\gamma$) "fills" out relevant regions of phase-space.

Aspen Winter Conf. Particle Phys., Jan'16

24/46

Z boson x-sections: Role of resummations

Very precise differential measurement (uncert. <1% in ϕ *) strongly constrains modeling of soft/collinear gluon emission.

NLO+NNLL resummations are crucial

to reproduce the Z spectra at low-p₋:

NLO+parton-showers (effective LL or NLL*) also reproduce well low-p_T spectra:

Aspen Winter Conf. Particle Phys., Jan'16

γ+jet x-sections: Role of ewk corrections

At high energies, negative W,Z corrections increasingly reduce by O(10-30%) the γ x-sections. Explanation of the data/theory<1 for m_y>1.5 TeV?

Parton distribution functions

Extraction of PDFs via global fits

Gluon PDF constraints from jets

29/46

- Inclusive jet p_τ spectra:
 p_τ = 20 GeV up to 2–3 TeV
 Exp. uncertainty: ~10% (JES)
- NLO pQCD describes data over 14 orders-magnitude !

Improved knowledge of gluon PDF:

Gluon PDF constraints from γ , charm, t-tbar

Forward D-mesons (LHCb):

Gluon PDF constraints from γ , charm, t-tbar

David d'Enterria (CERN)

Quark PDF constraints from W, Z "std. candles"

3

W electron charge asymmetry vs |η| measured to ~1%. Many uncertainties cancel in ratio. Constrains u/d PDF ratio

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

Quark PDF constraints from W, Z "std. candles"

W electron charge asymmetry vs |η| measured to ~1%. Many uncertainties cancel in ratio. Constrains u/d PDF ratio

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

W+charm constrains s/d PDF ratio:

Quark PDF constraints from W, Z "std. candles"

W electron charge asymmetry vs |η| measured to ~1%. Many uncertainties cancel in ratio. Constrains u/d PDF ratio

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

W+charm constrains s/d PDF ratio:

35/46

David d'Enterria (CERN)

Parton fragmentation functions

High-p_T hadron spectra vs. NLO

NLO pQCD overpredicts high- p_{T} hadron cross sections by factor $\times 2$:

Same NLO calculations reproduce well high- p_{τ} jet and photon spectra:

Problems in current parton-to-hadron FFs obtained from e^+e^- + hadrons data.

Badly-known gluon-to-hadron FFs

Dominant gluon production&fragmentation up to $p_{\tau} \sim 50$ GeV with <z> $\sim 0.3-0.6$

Improved gluon-to-hadrons FFs

■ Refitting of recent BaBar/Belle e⁺e⁻→hadrons data yields softer FFs & better agreement with high-p_T LHC hadron spectra:

Strong coupling determination

Determination of the QCD coupling α_s

α_s = Single free parameter in QCD

(in the $m_q \rightarrow 0$ limit). Determined at a given reference scale (usually m_z). Decreases as ~1/ln(Q²/ Λ^2), with Λ ~0.25 GeV

- Least precisely known of all couplings: $\delta \alpha_s \sim 1\%(!), \ \delta \alpha \sim 3.10^{-10}, \ \delta G_F \sim 5.10^{-8}, \ \delta G \sim 10^{-5}$
- Impacts all LHC cross-sections.
- Key for precise SM studies. Uncertainties: ±4% σ(ggH), ±7% H→cc, ±4% H→gg
- BSM physics (e.g. new coloured sectors).

 Determined through comparison of various experimental (ee, ep, pp) observables to associated pQCD predictions at NNLO accuracy.

QCD coupling from jet observables (CMS)

Ratio of 3-jets of 2-jets, 3-jet mass & inclusive jets x-sections constrain α_s (at NLO accuracy only) up to so-far unprobed scales Q ~ 1.4 TeV:

Measurements dominated by TH uncertainty: PDF & (asym.) scale uncertainty.

QCD coupling from jet observables (ATLAS)

Ratio of 3-jets of 2-jets, 3-jet mass & inclusive jets x-sections as well as angular correlations in multijet events constrain α_s (at NLO accuracy):

QCD coupling from t-tbar cross sections

Total top-antitop cross section (theoretically known at NNLO+NNLL) is the 1st p-p collider observable to constrain α_s at NNLO accuracy:

Data-theory x-section comparison for varying PDF+ α_s as a function of m_{top}:

QCD coupling from t-tbar cross sections

Total top-antitop cross section (theoretically known at NNLO+NNLL) is the 1st p-p collider observable to constrain α_s at NNLO accuracy:

Summary: Hard-QCD at the LHC

Wealth of (differential, central & fwd) data: Jets, (di)γ, W,Z, heavy-Q, Higgs

open: L = 5.8 pb⁻¹ (low PU runs)

filled: L_{int} = 10.71 fb⁻¹ (high PU runs)

NNPDF 2.1 NLO @NP

Good data-pQCD (N)NLO+(N)NLL accord for total and differential cross sections:

10,1

 10^{-3}

 10^{-2}

Improved (N)NLO PDFs via jets, γ , W,Z, charm, ttbar:

Refitted (N)NLO gluon-to-hadron FFs

High-precision α_{c} extractions

(asymptotic freedom tested up to ~2 TeV)

Hard-QCD precision $\sim 5\%$ = Cornerstone for all (B)SM signals & bckgds. studies.

Aspen Winter Conf. Particle Phys., Jan'16

10⁻⁵

 10^{-4}

NNPDF3.0 Globa

NNPDF 14

NPDF3.0 no Jet Dat

Q²) [ref]

g (x, Q²) [new] / g (x, C 80 60

10

16

14

12

10

8

 10^{-6}

g (x, $Q^2 = 4 \text{ GeV}^2$)

Back up slides

Quantum Chromodynamics

Quantum Field Theory describing the strong interaction between quarks & gluons via local gauge symmetry: non-Abelian SU(3) color group

Quantum Chromodynamics

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad \text{[Gauge interactions: } SU_{c}(3) + (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\text{h.c.}) \\ - \frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\text{h.c.}) \qquad \text{[Quark dynamics]} \\ - \frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \\ + (\bar{D}_{\mu} \phi) D^{\mu} \phi - m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}.$$

• Gauge-fermion dynamics via covariant derivatives:

$$\begin{split} D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} &= \left[\partial_{\mu} - \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} \right] \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \quad D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} &= \left[\partial_{\mu} + \frac{ig_1}{6} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} + ig \mathbf{G}_{\mu} \right] \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \\ D_{\mu} \nu_R &= \partial_{\mu} \nu_R, \quad D_{\mu} e_R = \left[\partial_{\mu} - ig_1 B_{\mu} \right] e_R, \quad D_{\mu} u_R = \left[\partial_{\mu} + \frac{i2g_1}{3} B_{\mu} + ig \mathbf{G}_{\mu} \right] u_R \quad D_{\mu} d_R = \left[\partial_{\mu} - \frac{ig_1}{3} B_{\mu} + ig \mathbf{G}_{\mu} \right] d_R, \\ D_{\mu} \phi &= \left[\partial_{\mu} + \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} \right] \phi. \end{split}$$

• Gauge-boson field strength tensors: $B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}, \quad \mathbf{W}_{\mu\nu} = \partial_{\mu}\mathbf{W}_{\nu} - \partial_{\nu}\mathbf{W}_{\mu} + ig_2(\mathbf{W}_{\mu}\mathbf{W}_{\nu} - \mathbf{W}_{\nu}\mathbf{W}_{\mu})/2, \quad \mathbf{G}_{\mu\nu} = \partial_{\mu}\mathbf{G}_{\nu} - \partial_{\nu}\mathbf{G}_{\mu} + ig(\mathbf{G}_{\mu}\mathbf{G}_{\nu} - \mathbf{G}_{\nu}\mathbf{G}_{\mu}).$

«Issues»: no CP-violation (axion?), confinement, non-perturbative structure/dynamics,...

Higgs cross sections: pQCD predictions

■ Theory calculations include increasing # of real emissions + virtual corrections + soft&collinear log resummations (improves p_T differential distributions).

Higgs production is paradigmatic example:

Higgs $d\sigma/dp_{\tau}$ at NNLO+NNLL:

Gluon PDF constraints via LHC γ , charm, t-tbar

Searches of "Beyond DGLAP" evolution

- DGLAP equations describe parton radiation as a function of Q²: f(Q²)~α_sln(Q²/Q₀²)ⁿ [fixed-order PDFs, collinear factorization]
 BFKL, saturation evolutions: At low-x & mid Q², parton emission in p_L,η
 - $f(x) \sim \alpha_s \ln(1/x)^n$ [uPDFs, k_T-factorization]

"Beyond DGLAP" in LHC Mueller-Navelet dijets?

Latest NLL+ BFKL also consistent with results... Final word at lower p_{τ} ?