

Jacopo Nardulli, Vladimir Gligorov RAL, Glasgow

 Outline

 →Long introduction

 (repeating several slides from previous talk)

 Talk in two parts

 → Pre-scaling the mass windows

 → HLT1 & Stripping

Requirements

 \rightarrow Trigger delivers 2kHz

 \rightarrow Stripping has to deliver 200Hz

 \rightarrow Stripping selection has to stay within 5Hz, for any

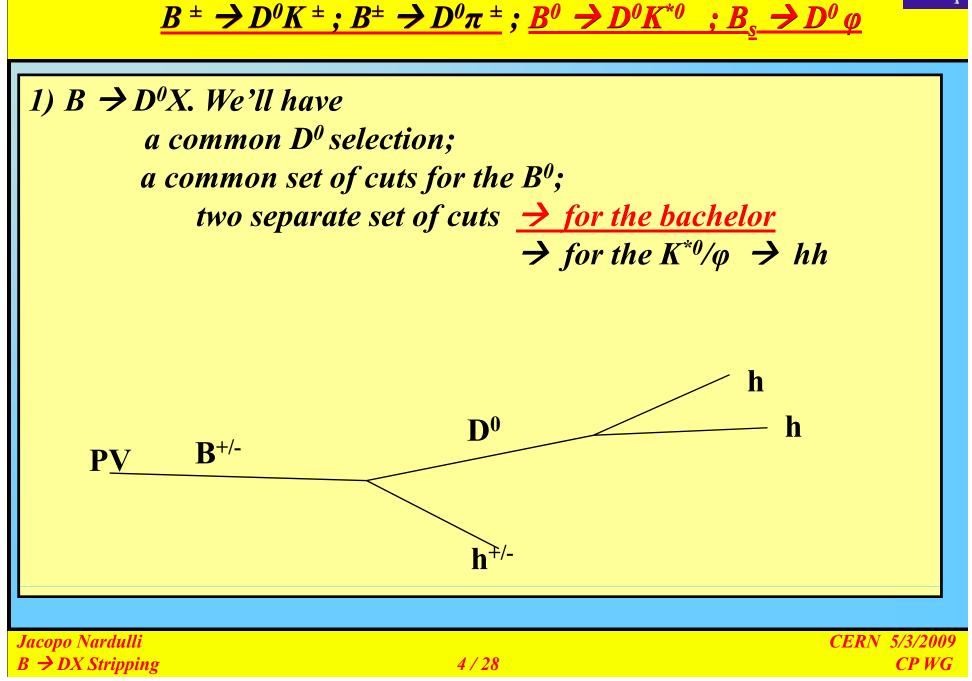
signal channel we are looking at

- \rightarrow It should be ~100% efficient for offline selected events
- \rightarrow For both signal and control channels

Channels under study ...and software details

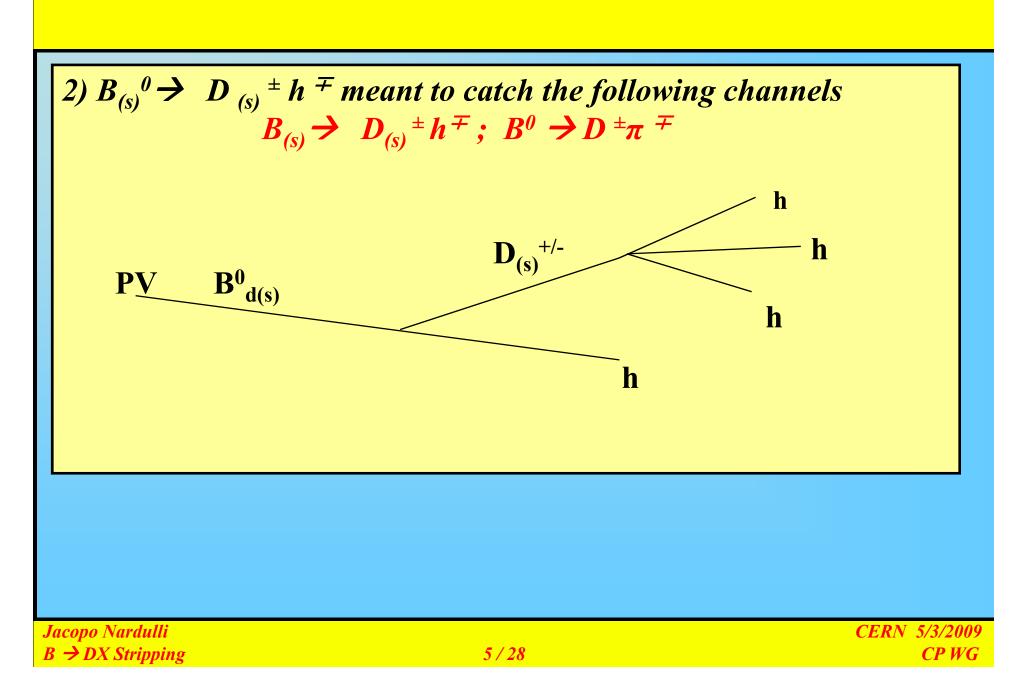
$$\begin{array}{cccc} \rightarrow B^{\theta} \rightarrow D^{\theta} K^{*\theta} \\ \rightarrow B_{s} \rightarrow D^{\theta} \varphi \\ \rightarrow B^{\pm} \rightarrow D^{\theta} K^{\pm} (\pi^{\pm}) \\ \rightarrow B_{s} \rightarrow D_{s}^{\pm} K^{\mp} (\pi^{\mp}) \\ \rightarrow B^{\theta} \rightarrow D^{\pm} \pi^{\mp} \end{array}$$

$$D^0 \rightarrow 2$$
 charged tracks


$$D^{+/-} \rightarrow 3$$
 charged tracks

Boring software details

→ DaVinci V22r0p2 with L0 patch from Patrick K.
 → 25k signal events for every channel
 → 1M L0-yes mbias events



 $B \rightarrow D^{\theta} X$ Selection

LHCh

 \rightarrow Keep wide mass windows and <u>pre-scale</u> them \rightarrow No PID cuts

 \rightarrow Write a selection which resembles the offline, but with looser cuts

 \rightarrow Try to avoid to create inefficiencies with respect to the offline selections

 \rightarrow Show results with & without HLT1

$B \rightarrow D(3h)h$ \rightarrow Keep without pre-scaling \pm 30 MeV both around the D mass and around the D_s mass. And ± 50 MeV both around the B and **B**_s mass \rightarrow Pre-scale the rest with factor 5% (at this stage arbitrary) $B \rightarrow D(hh)X$ \rightarrow Keep without pre-scaling \pm 30 MeV around the D mass; keep \pm 50 MeV around the B mass and -150/+200 MeV around the K*0 (to include also the φ) \rightarrow Pre-scale the rest with factor 5% (at this stage arbitrary)

scie RL	Science & Technology Facilities Council Rutherford Appleton Laboratory $B \rightarrow D^{0}X$ stripping selection		
	Selection cut	<u>Stripping</u>	
	D daughters	IPS > 2; Pt > 0.3	
	K* daughters	IPS > 2; $Pt > 0.3$	
	Bachelor IPS wrt PV	> 2 σ	
	Bachelor P/ Pt (Gev)	<i>Pt</i> > 0.3	
	Daughters track $\chi 2$	< 100	
	D mass	± 150 MeV	
	B mass	± 500 MeV	
	K* mass	± 250 MeV	
	Flight distance B/D	> -3 mm	
	Cos(θ)	> 0.9995	
	Flight Significance B	> 8 o	
	$IPS B \rightarrow PV$	< 6 σ	
Jacoj B →	χ2 K* / D / B vertex	< 12 / 12 / 12	

Science & Technology Facilities Council Rutherford Appleton Laboratory $Offline \ comparison: B \rightarrow D^0 X \ stripping \ selection$			
Selection cut	Offline (D^0K^{*0})	Offline (D⁰K⁺)	<u>Stripping</u>
D daughters	StandardD0	StandardD0	IPS > 2; $Pt > 0.3$
K* daughters	StandardTightK*	NN	IPS > 2; $Pt > 0.3$
Bachelor IPS wrt PV	NN	> 3.5 o	> 2 o
Bachelor P/ Pt (Gev)	NN	2 < P < 100; Pt > 0.4	<i>Pt</i> > 0.3
PID Kaons $dll_{K\pi}$	> 2	>-1	Not applied
Daughters track $\chi 2$	Not applied	Not applied	< 100
D mass	± 25 MeV	± 21 MeV	± 150 MeV
B mass	± 50 MeV	± 50 MeV	± 500 MeV
K* mass	± 150 MeV	NN	± 250 MeV
Flight distance B/D	> -1 mm	> -1 mm & < 7mm	> -3 mm
Cos(θ)	> 0.9998	> 0.9999	> 0.9995
Flight Significance B	>10 σ	>16 o	> 8 o
$IPS B \rightarrow PV$	< 3.5 σ	< 3.0 o	< 6 0
χ2 K* / D / B vertex	< 9 / 6 / 9	< NN // 4 / 4	< 12 / 12 / 12
Vertex isolation cut	< 12 tracks with 2 σ	Not applied	<u>Not applied</u>

 \rightarrow In the $D^{\theta}K^{*\theta}(\varphi)$ selection efficiency drops to 98 %

 \rightarrow mbias 35 Hz without HLT1

 \rightarrow mbias 4 Hz with HLT1

 \rightarrow This are arbitrary numbers and to some extent meaningless, since I have not optimized any cut and I have just picked a number for the pre-scaling factor. My only point is that I have implemented the prescaling within the already existing framework

$B_{(s)}^{\ \theta} \rightarrow D_{(s)}^{\pm} h^{\mp}$ Stripping selection

Selection cut	<u>Stripping</u>
D daughters	$Pt > 0.25$; $P > 2$; $IPS > 2\sigma$
Bachelor P & Pt (Gev)	P > 2; $Pt > 0.4$
Bachelor IPS wrt PV	> 2.0 <i>\sigma</i>
Daughters track $\chi 2$	< 100
D mass	- 100 / + 150 MeV
B mass	± 500 MeV
D IPS wrt PV	> 2 <i>\sigma</i>
D FS wrt PV	> 9 o
χ2 D vertex	< 15
$IPS B \rightarrow PV$	< 6.0 σ
χ2 B vertex	< 15
Cos(θ)	> 0.9995
$\rightarrow DX Stripping \qquad 11/28$	CP WG

Science & Technology Facilities Council Rutherford Appleton Laboratory Offline comparison: $B_{(s)}^{\ \theta} \rightarrow D_{(s)}^{\ \pm} h^{\mp}$			
Selection cut	<u>Offline (D_sK)</u>	<u>Offline (Dπ)</u>	<u>Stripping</u>
D daughters	Pt > 0.3; P > 2;	Pt > 0.3; $P > 2$;	Pt > 0.25; P > 2;
	IPS >3 σ	IPS >3 o	$IPS > 2 \sigma$
Bachelor P & Pt (Gev)	2 < P < 100; $Pt > 0.5$	P > 2; $Pt > 0.5$	P > 2; $Pt > 0.4$
Bachelor IPS wrt PV	> 3.0 <i>o</i>	> 3.0 <i>o</i>	> 2.0 <i>o</i>
Daughters track $\chi 2$	Not applied	Not applied	< 100
D mass	± 21 MeV	± 21 MeV	- 100 / + 150 MeV
B mass	± 50 MeV	± 50 MeV	± 500 MeV
D IPS wrt PV	>3 σ	>3 σ	> 2 <i>o</i>
χ2 D vertex	< 15	< 15	<15
$IPS B \rightarrow PV$	< 4.0 σ	< 4.0 σ	< 6.0 σ
χ2 B vertex	< 10	<10	<15
Cos(θ)	<i>> 0.9999</i>	<i>> 0.9999</i>	> 0.9995
DFS wrt PV	>10 σ	> 10 o	> 9 o
Flight Significance B	> 80	$> 2.5 \sigma$	<u>Not applied</u>

 \rightarrow Efficiency drops to 98 %

 \rightarrow mbias 25 Hz without HLT1

 \rightarrow mbias 2 Hz with HLT1

 \rightarrow This are arbitrary numbers and to some extent meaningless, since I have not optimized any cut and I have just picked a number for the pre-scaling factor. My only point is that I have implemented the prescaling within the already existing framework

Second part:

HLT1 & Stripping, what's going on ?

Introduction

 \rightarrow What is the problem ? As summarized by Marta:

	After L0	L0+HLT1
B→D(3h)h	223 Hz	12 Hz
B→D(2h)h	111 Hz	13 Hz

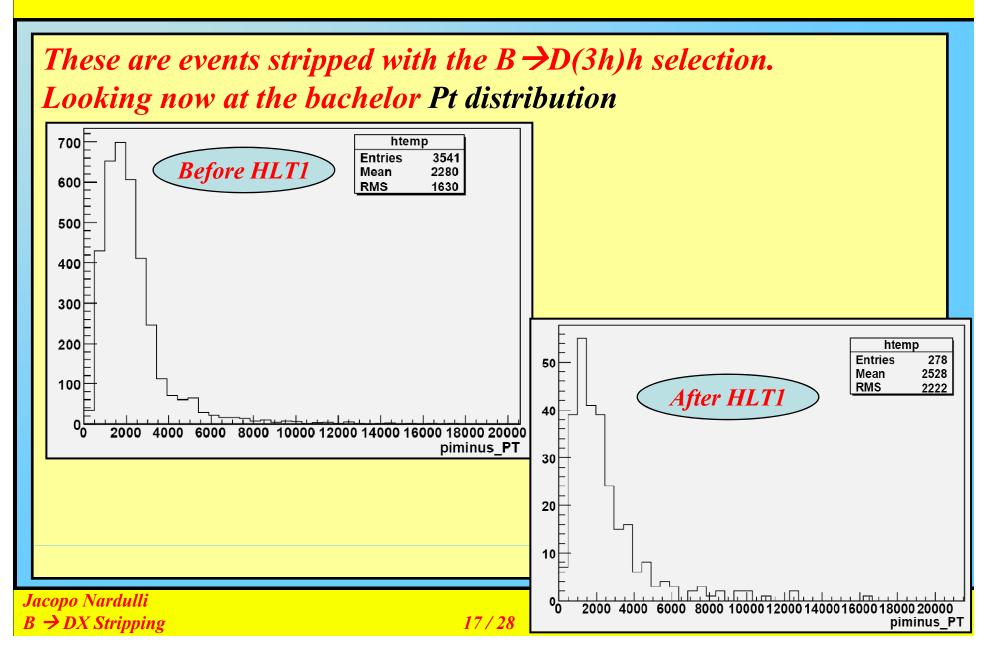
 \rightarrow For simplicity I will next studies on the $B \rightarrow D(3h)h$ selection

What can be done to try to identify the problem

1. Will try to look at a few variables with/without HLT1 and see if anything can be spotted In other words is there a specific HLT1 cut, not applied in the stripping –or offline- which kills the mbias rate ?

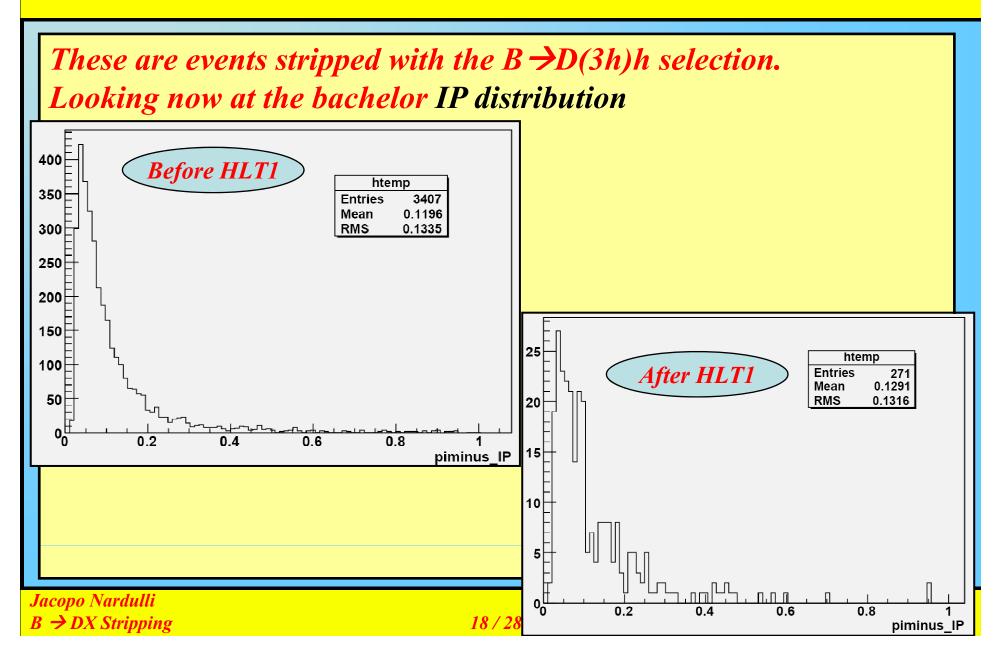
2. Will try to re-produce some HLT1 cuts in the stripping and see if they can help to explain this ~factor 10

All that follows is meant as material for discussion and new ideas are welcome.


Cut in HLT1 hadron lines	
1. Et Cut	> 3500
2. Min Et Cut	> 2500
3. SingleHadPtCut	> 5000
4. HadMainIPCut	> 0.1
5. HadMainPtCut	> 2500
6. HadMainTrackFitChi_2Cut	< 10
7. HadVERTEXDocaCut	< 0.2
8. HadVERTEXDzCut	> ()
9. HadVERTEX_MinIPCut	> 0.1
10. HadVERTEX_MinPtCut	> 1000
11.HadVertexPointingCut	< 0.4
As taken from HltConf/python/H	ltConf/HltHadronLines.py

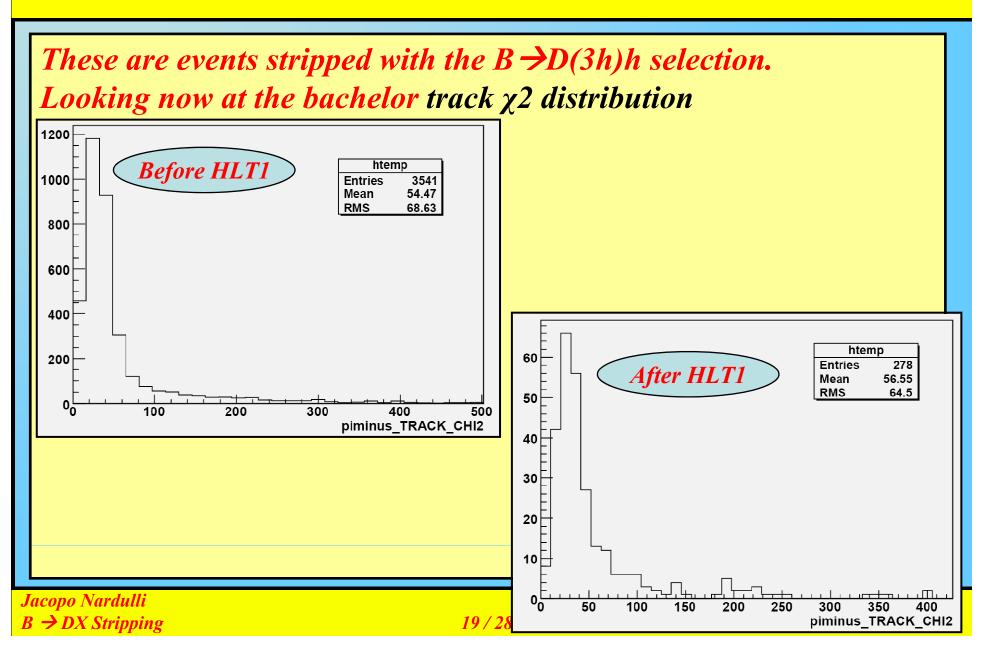
Before/After HLT1

Here looking at mbias passing a loose $B \rightarrow D(3h)h$ stripping selection



Before/After HLT1

Here looking at mbias passing a loose $B \rightarrow D(3h)h$ stripping selection



Before/After HLT1

Here looking at mbias passing a loose $B \rightarrow D(3h)h$ stripping selection

- → No major differences are observed, an effect is seen in the Pt distribution
- \rightarrow Was this expected ? To some extent yes. For various reasons:
- 1. Environment is completely different On/Offline. The cuts in the HLT1 do not directly produce an effect on variables reconstructed offline.
- 2. We are not looking at the same particles/tracks. We do not know what triggered HLT1
- 3. It is likely that this ~factor 10 is a combination of various effects.

Now try something different: try to put some HLT1 cuts in the stripping.

Jacopo Nardulli B → DX Stripping

HLT1 cuts in the stripping

How?

- → Keep few very loose stripping cuts
- → Add one by one some stripping cuts and see if this factor ~ 10 goes away or not
- → By creating a stripping selection more directly correlated with the HLT1 cuts

HLT1 cuts in the stripping The reduction factor

Configuration	<u>Reduction from HLT1</u>
	<u>(factor X)</u>
Previous loose configuration	12.6
After the cuts	12.5

HLT1 cuts in the stripping The reduction factor

Configuration	Reduction from HLT1
	(factor X)
Previous loose configuration	12.6
After the cuts	12.5

Now re-starting from scratch and removing almost all cuts

Removing almost all the cuts and the	19.1
pre-scaling	(Bigger cause I removed all the cuts)

HLT1 cuts in the stripping The reduction factor: Pt

<u>Configuration</u>	<u>Reduction from HLT1</u> (factor X)
Previous loose configuration	12.6
After the cuts	12.5

Now re-starting from scratch and removing almost all cuts

Removing almost all the cuts and the pre-scaling	19.1 (Bigger cause I removed all the cuts)
+ 2.5 Gev Pt cut on one of daughters	8.8
+ 5.0 Gev Pt cut on one of daughters	5.4

HLT1 cuts in the stripping The reduction factor : pointing cut

<u>Reduction from HLT1</u> <u>(factor X)</u>		
12.6		
12.5		
Now re-starting from scratch and removing almost all cuts		
19.1 (Bigger cause I removed all the cuts)		
17.4		
8.7		

HLT1 cuts in the stripping The reduction factor : track χ2

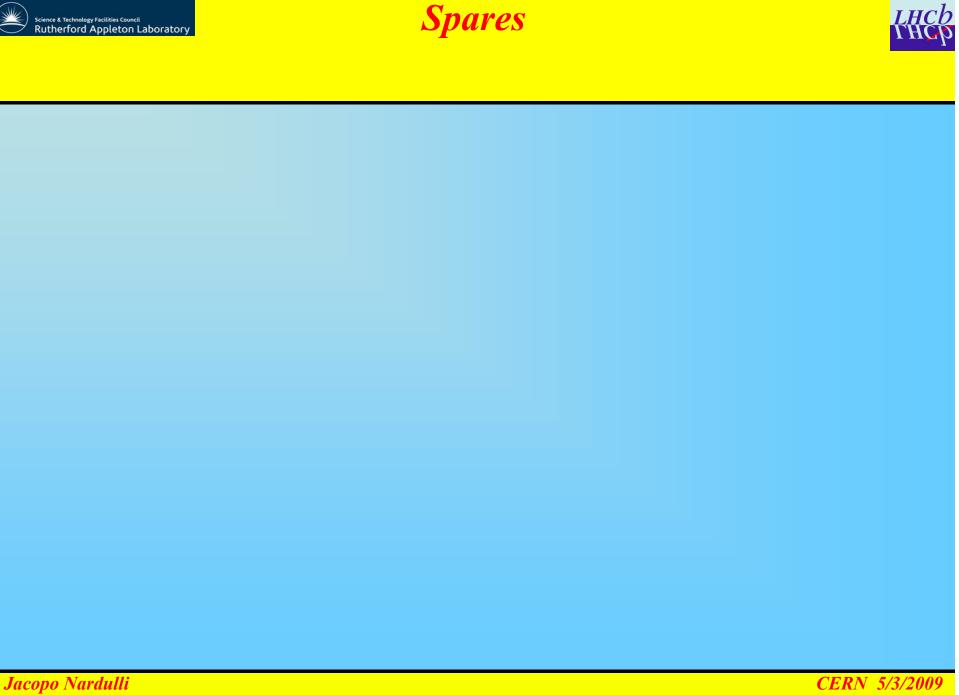
<u>Configuration</u>	<u>Reduction from HLT1</u> (factor X)
Previous loose configuration	12.6
After the cuts	12.5

Now re-starting from scratch and removing almost all cuts

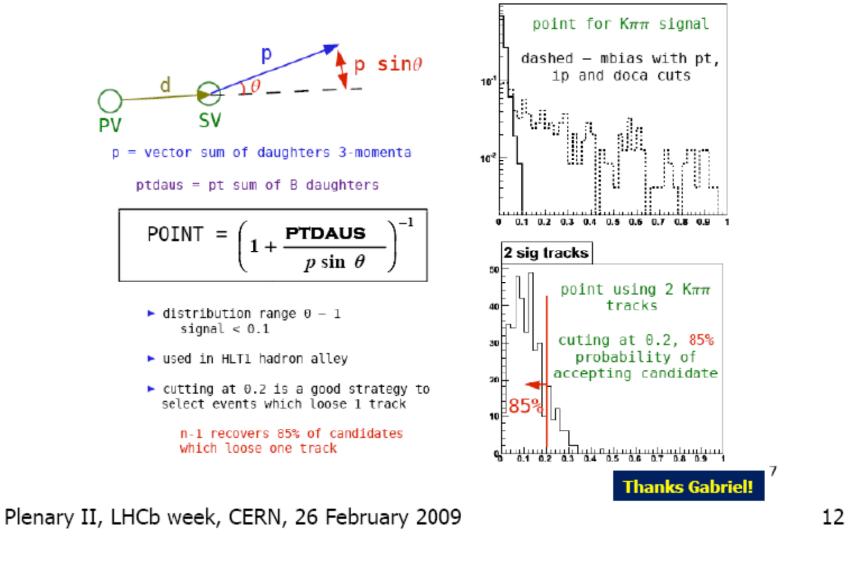
Removing almost all the cuts and the pre-scaling	19.1 (Bigger cause I removed all the cuts)
No Pt cuts + No pointing cut	18.1
+ track $\chi 2$ cut at < 10	

HLT1 cuts in the stripping The reduction factor : all together

Configuration	Reduction from HLT1
	<u>(factor X)</u>
Previous loose configuration	12.6
After the cuts	12.5
Removing almost all the cuts and the	19.1
pre-scaling	(Bigger cause I removed all the cuts)
+ 2.5 Gev Pt cut on one of daughters	8.8
+ 5.0 Gev Pt cut on one of daughters	5.4
<i>No Pt cuts + pointing cut @ < 0.4</i>	17.4
<i>Pt on one daughter > 2.5GeV + pointing cut @ < 0.4</i>	8. 7
No Pt cuts + No pointing cut + track χ2 cut at < 10	18.1



- \rightarrow *Pre-scaling is now implemented within the framework*
- \rightarrow An investigation on the HLT1/Stripping problem has started
- → Looking at the some distributions with/without the HLT1 a small increase in the mean of the Pt distribution is seen
- → Have tried to re-produce the HLT1 cuts into the stripping 1 by 1, in order to have a stripping selection more directly correlated with the HLT1
- → So far have tried with pointing cut → no particular effect seen with track χ2 cut → no particular effect seen with Pt cut → a drop can be seen indicating the correlation of this cut with what done in HLT1


 $B \rightarrow DX$ Stripping

POINTING CUT DEFINITION POINTING

🗸 DA Suuppuig

DiHadron line: mb rate, candidates and L0xHLT1 TOS efficiencies

	mb rate (kHz)	mb candidates	Bs2PiK	Bs2PhiPhi	Bs2DsPi	Bd2D0Kstar
L0T>-3500.0	582.13	1.27	37.90	18.80	29.10	31.90
Calo2DChi2<4	555.09	4.81	38.00	18.30	28.60	32.10
Velo	552.70	4.89	37.90	18.30	28.60	32.10
IP>0.1	407.05	2.74	36.30	16.40	28.00	30.60
Calo3DChi2<4	290.84	2.17	36.00	15.80	27.10	28.60
VeloCalo	290.84	2.30	85.90	15.70	26.90	28.40
GuidedForward	66.47	1.35	35.70	14.80	26.00	26.60
PT>2500.0	27.04	1.36	34.80	13.30	24.50	24.90
Velo1	27.04	58.38	43.70	21.60	34.80	34.00
IP>0.11	27.04	33.49	35.50	14.40	25.60	26.00
MatchIDsFraction < 0.9	27.04	32.25	31.00	13.90	25.40	25.80
DOCA<0.2	26.29	15.85	34.50	13.20	24.30	24.90
VertexDz>0.0	25.84	9.08	34.30	13.10	23.90	24.70
Forward	23.75	5.46	33.30	13.10	23.80	24.70
VertexMinPT>1000.0	7.77	1.96	33.30	12.70	23.00	23.60
VertexPointing<0.4	4.48	1.87	33.30	12.60	23.00	23.60
FitTrack	4.48	1.87	33.30	12.60	23.00	23.60
FitVertexMinIP>0.1	4.18	1.82	33.10	12.10	22.70	23.40
${\bf FitVertexMaxChi2OverNdf}{<}10.0$	1.79	1.75	32.30	11.90	22.50	23.20

DaVinci v22r0p2 (+patch from Diego)

100k minbias events, 1k signal

6

1

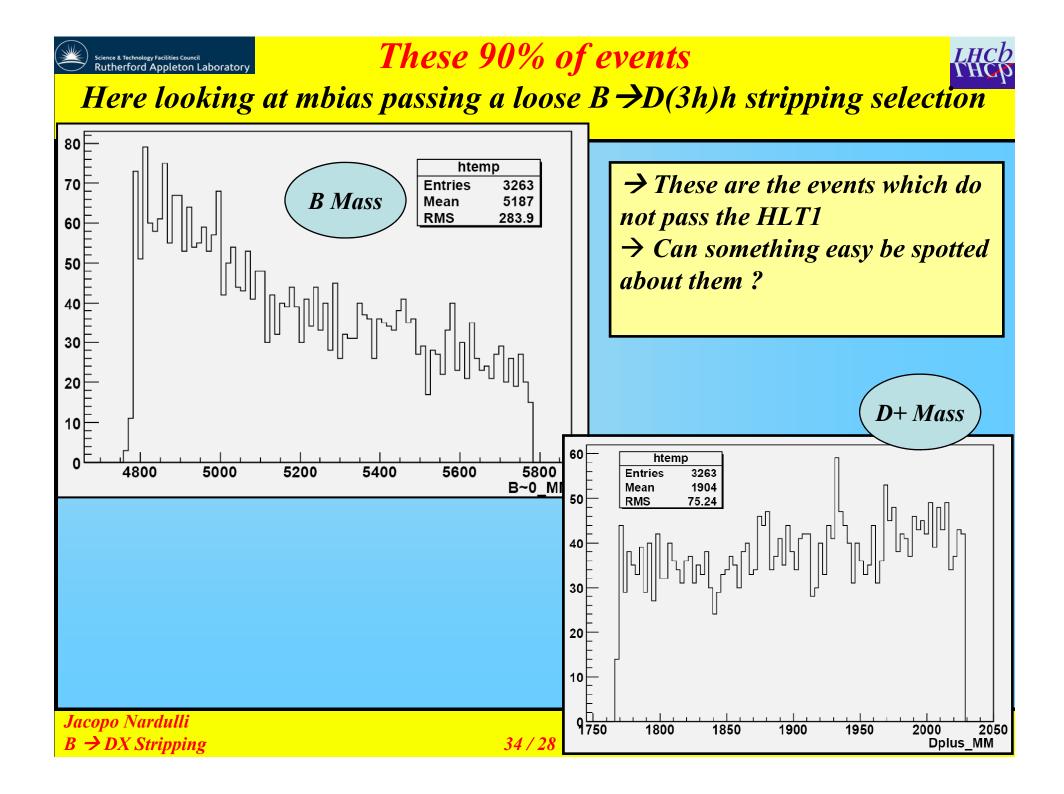
Example of reducing the rate:

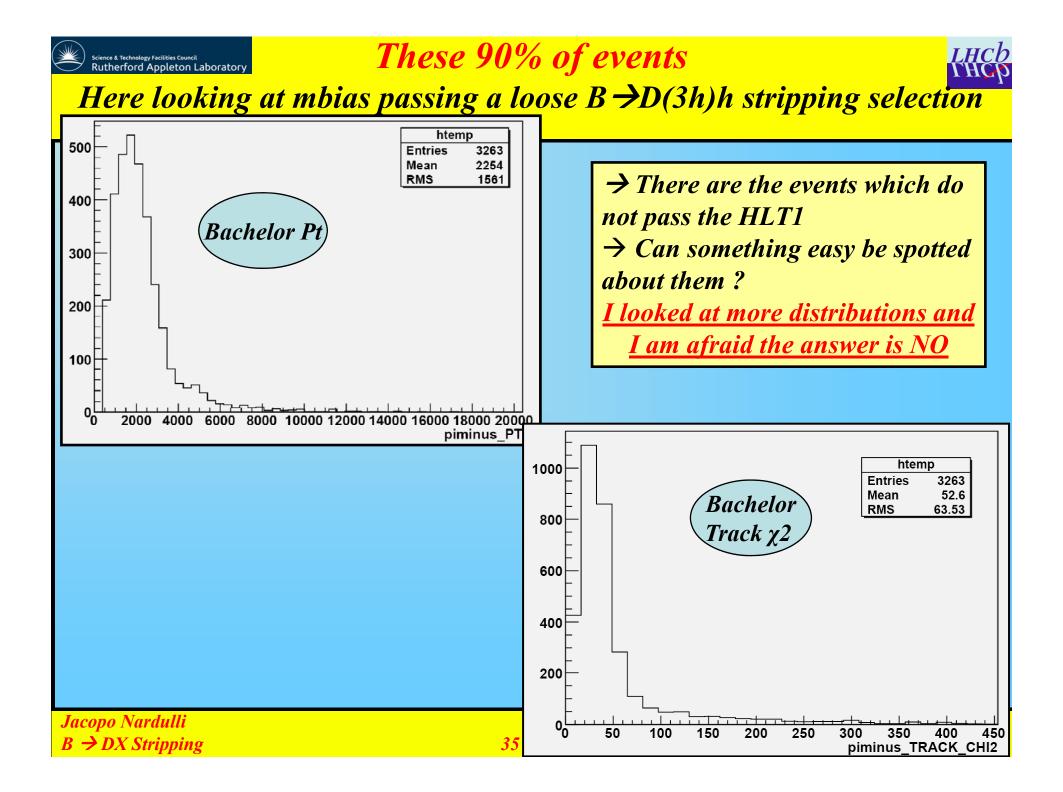
Rate without (with) HLT1

Selection cut	MBias rate without (with) HLT1 [Hz]	% of ghosts		
Previous configuration	1216 (109)	$(53 \pm 5) \%$		
Pt cut on daughters and bachelor	547 (52)	(47 ± 8) %		
> 300 MeV				
With BFS cut at >8	131 (12)	(63 ± 15) %		
Adding B/D/K* χ2 cut at <12	111 (10)	$(60 \pm 16) \%$		
With cut on B IPS < 6	95 (7)	(53 ± 19) %		
Daughter track χ^2 < 100	35 (4)	(43 ± 28) %		

→ Pre-scaling allows us to reduce the rate and have almost 'acceptable' values of rate without the HLT1. → Factor 10 given by HLT1 always there All these cuts are looser or the same as in the offline apart from the track $\chi 2 \rightarrow$ In the D⁰K^{*0}(φ) selection efficiency drops to 98 %

Example of reducing the rate: Rate without (with) HLT1




Selection cut	MBias rate without (with) HLT1 [Hz]	% of ghosts
Previous configuration	795 (63)	$(60 \pm 6) \%$
With DFS cut at $> 9 \sigma$	133 (10)	$(55 \pm 16) \%$
Adding B/D/ χ2 cut at <15	81 (7)	(55 ± 25) %
Daughter track χ2 < 100	25 (2)	(45 ± 30) %

 \rightarrow Pre-scaling allows us to reduce the rate and have almost 'acceptable' values of rate without the HLT1.

 \rightarrow Factor 10 given by HLT1 always there

All these cuts are looser or the same as in the offline apart from the track $\chi 2 \rightarrow E$ fficiency for offline selected events drops to 98 %

CERN 5/3/2009

CP WG

 \rightarrow 278 Events total Numbers do not quite add up \rightarrow 75 diHadron \rightarrow 65 SingleHadron (25 of these are shared with diHadron) \rightarrow 40 photonDecision \rightarrow 10 XpressDecision \rightarrow 12 Electron TrackDecision \rightarrow ~50 from various muon related decision