Single Molecule Fluorescent Imaging & Neutrinoless Double Beta Decay

Austin D McDonald et al.
Department of Physics
Background Impact

Presence of background in the ROI severely impacts the sensitivity

Plot from Jason Detweiler
The Problem

- Background gammas entering the detector can mimic signal events
- No one has been able to reduce background to a negligible level

Limit on the Radiative Neutrinoless Double Electron Capture of ^{36}Ar from GERDA Phase I
GERDA Collaboration (M. Agostini (Gran Sasso) et al.). May 5, 2016. 7 pp.
Published in Eur.Phys.J. C76 (2016) no.12, 652

http://www.physik.uzh.ch/groups/groupbaudis/gerda/
Barium Tagging

In pure xenon barium is only produced by double beta decay
How does it work?

Molecules become fluorescence after capturing Ba++. Various molecules exist for fluorescence detection.
TIRF

External optical elements

- Laser
- Beam splitter
- Long-pass filter
- Spectrophotometer

Optical fiber

Fluorescence sensing electrode

- E-Field
- Ba^{2+}
- Light-guiding sensor
- Mirror
- Cathode

Color Key:
- Incident excitation light
- Emitted fluorescent light
- Unchelated sensing compound
- Ba^{2+} chelated sensing compound
Road Map

• Test in aqueous solution
• Measure barium mobility in xenon gas
 – Select Ba++ beam
• Test fluorescence in dry gaseous xenon
 – Test ensembles of barium ions
 – Test single ion sensitivity
Aqueous solution
Aqueous solution

Fluo-3

\[\frac{F_{\text{max}}}{F_{\text{min}}} = 17.4 \]

Fluo-4

\[\frac{F_{\text{max}}}{F_{\text{min}}} = 85.22 \]
Barium ion mobility in xenon gas
Barium ion mobility in xenon gas
Summary

• HPGXe TPC with internal real-time fluorescent tagging of barium daughter at room temperature may offer a new way to eliminate gamma ray backgrounds in NLDBD search
Summary

- HPGXe TPC with internal real-time fluorescent tagging of barium daughter at room temperature may offer a new way to eliminate gamma ray backgrounds in NLDBD search
- Initial steps have been completed at UT Arlington
Thank You
Apparatus
Measurements

Fluo-3

\[
\frac{F_{\text{max}}}{F_{\text{min}}} = 254.77
\]

Fluo-4

\[
\frac{F_{\text{max}}}{F_{\text{min}}} = 291.83
\]
• Evanescence excitation of molecules
What is SMFI?

Marko Kaksonen, Christopher P Toret, and David G Drubin. “Harnessing actin dynamics for clathrin-mediated endocytosis”. In: Nature Reviews Molecular Cell Biology 7.6 (June 2006), pp. 404–414. ISSN: 1471-0072. URL: http://dx.doi.org/10.1038/nrm1940.

How does it work?

The plug and play of chemistry

Frank Foss at UTA specializes in bonding these molecules
Sample preparation

- Buffer solution
- Moderates the H+ OH-
- Keeps the pH stable when adding chemicals to the solution
- Fluo is slightly acidic when reconstituted
- The dication solution is slightly acidic

\[Ba(ClO_4)_2 \rightarrow Ba^{++} + 2(ClO_4)^- \]
Sample preparation

- Most dyes have k_d in the nM range
- Fluo-4 k_d is 325 nM
- The low k_d makes SMFI extremely sensitive to ions

http://www.embl.de/eamnet/html/calcium/quantifying2.htm
Sample preparation

- Although trace amounts of dications they can still produce a large signal

<table>
<thead>
<tr>
<th>Cation traces</th>
<th>Amount (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>≤0.001</td>
</tr>
<tr>
<td>Al</td>
<td>≤0.1</td>
</tr>
<tr>
<td>As</td>
<td>≤0.01</td>
</tr>
<tr>
<td>Au</td>
<td>≤0.005</td>
</tr>
<tr>
<td>B</td>
<td>≤0.1</td>
</tr>
<tr>
<td>Ba</td>
<td>≤0.005</td>
</tr>
<tr>
<td>Be</td>
<td>≤0.005</td>
</tr>
<tr>
<td>Bi</td>
<td>≤0.001</td>
</tr>
<tr>
<td>Ca</td>
<td>≤0.2</td>
</tr>
<tr>
<td>Cd</td>
<td>≤0.001</td>
</tr>
<tr>
<td>Ce</td>
<td>≤0.001</td>
</tr>
</tbody>
</table>

5nM

Sigma aldrich

Calcium Sponge™ S consists of the Ca\(^{2+}\)-selective BAPTA chelator coupled to a polymer matrix. Polycations including Ca\(^{2+}\) and Zn\(^{2+}\) can be selective removed from aqueous solutions simply by stirring a solution with the water-insoluble Calcium Sponge S polymer.
Measurements

Single Molecule Fluorescence Imaging as a Technique for Barium Tagging in Neutrinoless Double Beta Decay

B. J. P. Jones, A. D. McDonald and D. R. Nygren

University of Texas at Arlington,
502 Yates St, Arlington, TX 76019, United States of America
E-mail: ben.jones@uta.edu, austin.mcdonald@uta.edu, nygren@uta.edu
How to test in HPGXe?
How to test in HPGXe?

- Ion source assembled and currently being tested
- Spark voltage controls the amount of ions
How to test in HPGXe?

- Have optimized the protocol for plating barium onto copper rods
- EDX spectra of the surface shows an increase in barium and decrease in copper
How to test in HPGXe?
How to test in HPGXe?

- Gates have been constructed
How to test in HPGXe?
How to test in HPGXe?

Gas system pre assembly
How to test in HPGXe?

- Controlled by one NI card
- Low noise pre-amp
- Ability to chop the beam
How to test in HPGXe?

Transmitter board

• Allow us to send pulses to 12kV electronics safely

Receiver board

• Provide pre amplification with low noise

Amplifier board
213 V/cm applied field with 320 V ring to ring in main field cage. 600 V spark potential stepped down in 100 V steps over mini-field-cage.
Axial (Z) Field Residual \((fraction \ of \ applied \ field)\)

Radial (R) Field Residual \((fraction \ of \ applied \ field)\)