Neutrinos as a probe of supernova
explosion dynamics

NCI HI(;H—END CO;1F’UTING SEP\«'_ICES Bernhard Mu”er
|]|RAC Queen's University Belfast
st esec g s Compu Monash University

F. Hanke, H.-Th. Janka (MPA Garching)
G. Raffelt (MPP Munich)
|. Tamborra (Copenhagen)



Direct probes of
the first second of
a core-collapse
supernova

heavy elements

neutron stars &
supernova
remnants

massive star

core-collapse.
supernovaesss



The neutrino-driven mechanism In
Its modern flavour

shock

Stalled accretion shock still oscillations
(“SASI")

pushed outward to ~150km
as matter piles up on the
PNS, then recedes again

convection

Heating or gain region
develops some tens of ms
after bounce

Convective overturn & shock
oscillations “SASI” enhance
the efficiency of v-heating,
which finally revives the
shock

shock

Big challenge: Show that
this works!



Computational
Challenges

Multi-dimensionality of the flow
Multi-scale problem

Transition between the diffusion &
free streaming regimes of the
neutrinos — Kkinetic theory required

— 6D problem

Nuclear & particle physics input
partly undetermined

Strong gravitational fields
(GM/rc*=0.1...0.2) & high velocities
— relativistic effects important

Combine all this in a first-principle
approach!

The most ambitious 3D models
currently take ~50 million core
hours

not to scale

~10°km

>



The Road to 3D Explosion Models

* 3D models at the threshold &
more reluctant to explode than
in 2D (failure or delay)

« But first successes: Melson et
al. (2015ab), Lentz et al.
(2015)...

e Possible keys to more robust
explosions:

* Modified neutrino rates (e.g.
Melson et al. 2015)?

* Lower explosion threshold in
SASI-dominated regime
(Fernandez 2015)?

» “Perturbation-aided” explosions More in Tory M < talk
(Couch et al. 2015, Mueller 2016) ore in fony Mezzacappa's ta
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Red: Si-rich ashes Neutrino-heated bubbles in ensuing supernova (red/yellow)
Cyan: Outer O shell boundary

Grey: Si core 0‘f| — 3D progenitor
“Perturbation-aided” neutrino-driven
mechanism quite efficient in first
comparisons with multi-group neutrino
transport (Muller 2016)
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Fingerprints for multi-D flow dynamics in
the supernova core?



The Neutrino Signal — Historical
Background

Neutrinos already detected from 8 T
SN1987 (two dozen): ~

e ~3x10°°ergs radiated in V's
e Avg. temperature: 4MeV

* Neutrinosphere radius ~20km

. v, lifetime >5x10%s

Neutrinosphere radius [10km]

« v, mass <30eV

Ty (MeV)
« Maybe indication of modest core Inititial neutrinosphere
mass (Bruenn 1987, later temperature [MeV]
revisited by O'Connor & Ott 2013) adapted from

Loredo & Lamb (1998)

« Constraints on hypothetical axion

mass (Ellis & Olive 1987, Keil et Can we learn more about
al. 1997) the supernova engine?



Tricky observables because of

The Time-Dependent Neutrino
Signal

Electron neutrino burst
after bounce

e Accretion phase:

flavour conversion (MSW/non-
linear)

<

« Gray-body law for v .
L~4meoc R°T"

 Additional accretion
contribution

L ~xGMMIR

acc

for v, and v,

« Vv, mean energy~neutron
star mass

. %igns of the explosion?
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Can we learn more about the dynamics?

« Exploit temporal variations of the
v signal as fingerprints of multi-D
instabilities (Lund et al. 2010,
Tamborra et al. 2013, Muller &
Janka 2014)

 Exemplary cases:

y (km)

e Supernova models as seen by
lceCube at a distance of 10kpc

* Only total PMT count rate used (no "
measurement of energy & direction e

for MeV neutrinos)

 Shot noise from dark current —
included —

» No non-linear flavor conversion & | S e
ordinary mass hierarchy assumed |

» HyperK will also be able to this and L
provide spectral information as well



Detecting Shock Oscillations

Sloshing motions result in
guasi-periodic and
asymmetric neutrino
emission

Sloshing frequency related to
shock and proto-neutron star

I'ad IUS Simulated signal Muller& Janka (2014}
7000 (With noise)

Detectable in lceCube for up
to ~10 kpc

Opportunity to reconstruct
shock trajectory!

6000 South (+1000)

North (—1000)

Flavour conversion only 2000 el

. . time after bounce [s]
affects modulation amplitude Non-exploding 25 M., model



Detecting Shock Oscillations

Sloshing motions result in
guasi-periodic and
asymmetric neutrino

emission

Sloshing frequency related to -t
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Detecting Shock
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LESA Instability
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of the MPA group (Tamborra et al. 2014)

x flm]

Electron fraction in
proto-neutron star

Nature of LESA still unclear: Accretion instability or
low-mode nature of PNS convection responsible?
May lead to very slow modulation of detected signal
— likely not detectable

But will affect nucleosynthesis (Y, in outflow)

Tamborra et al. (2014)



Signatures of the Explosion
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Signatures of the Explosion

* Explosion phase
characterized by slowly-
changing large-scale £
anisotropies £l

e — emission modulation
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Signatures of the Explosion

 Explosion phase
characterized by slowly-
changing large-scale
anisotropies

e — emission modulation ¥, ~—EEEE = EE————8 8 E———
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when recombination
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Signatures of the Explosion
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* Explosion phase
characterized by slowly-  _
changing large-scale 5 of
anisotropies )

« — emission modulation

periods >30ms
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7000 Mdaller & Janka (2014)
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Conclusions

First successful 3D simulations of core-collapse supernovae with self-
consistent neutrino transport after initial setbacks

3D explosion models still need to become more robust — likely due to a
combination of improved physics (3D initial conditions, better neutrino
rates...)

Neutrinos may be the prime messenger from the next Galactic
supernova, will reveal:

« Neutron star mass (<E(v,)) & accretion rate as a function of time

« Temporal modulation of neutrino signal reveals nature of hydrodynamics instabilities
(SASI vs. convection) — but need to reinvestigate models with 3D initial conditions

« Time of explosion (decrease in modulation frequency)

* For SASI: time-dependent shock radius (!)
Other goals of neutrino astronomy (not covered here):

« Early proto-neutron star cooling (time scale — EoS properties, e.g. symmetry
energy,...)

» Clues about mass hierarchy, presence of sterile neutrinos...
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