

ENERGY RARE EVENT DETECTION

Table of contents

- 1. Introduction
- 2. Spatial vs Energy resolution
- 3. Experimental setup (GSPC+RGA)
- 4. EL Yield & $R_{\rm E}$ of Xe-CO2/CH4/CF4
- 5. Discussion & the compromise
- 6. Conclusion

Introduction

- 1. Neutrinos absolute mass?
- **2.** Majorana particles? $(v = \overline{v})$

Answer: neutrinoless double beta decay

NEXT-100

Neutrino Experiment with a Xenon Time Projection
Chamber (TPC)

NEXT-100 detector: 100 kg of ¹³⁶Xe gas at 15 bar

High-pressure Xe (**HPXe**) electroluminescense (**EL**) **TPC** with separated readouts for **calorimetry** and **tracking**

NEXT key features:

- 1) Excellent $R_E \rightarrow 0.5 0.7 \%$ at $Q_{\beta\beta}$ (2.457 MeV)
- 2) Scalability → towards the ton scale
- **3) Topological signature** → background rejection

NEXT — improving the spatial resolution

Improve topological signature...

1. Longitudinal resolution:

- D_L (Xe) ~ 4.5 mm/m
- EL gap (5mm) → 1.5 mm

2. Transversal resolution:

- D_T (Xe) ~ 10 mm/m
- SiPMs pitch + barycenter algorithm → 1 mm

* reducing electron diffusion:

It also degrades:

- S1 and S2 yield
- Energy resolution

Additive & concentration

1) Xe – M_x reduces e^- diffusion: e^- cooled by vibrational excitation modes of M_x

2) $Xe - M_x$ degrades S1, S2 and R_E :

• e^- coolling \rightarrow lower Y at same E (S2)

- quenching by M_x (S1, S2)
- attachment/recombination: in drift or EL regions (S2)
- lower transparency to VUV (S1, S2)

3) Xe – M_x technical issues:

- stable & compatible (with detector and purification system)
- of easy handling and cleaning

Experimental setup

- ightharpoonup Driftless Gas Scintillation Proportional Counter (GSPC) with $EL_{gap}=25mm$
 - Eletroluminescence and R_E (@ \sim 1.1 bar)
- Gas Residual Analyzer (RGA)
 - real-time mixture concentration
- Gas purified by SAES hot getters
 - Pure Xe at 250° C
 - Xe CH₄ and CF₄ at 120° C
 - $Xe CO_2$ at 80° C

Energy resolution $(R_E = FWHM/_{centroid})$

 $R_E^2 \propto (N_{EL})^{-1}$

for E/N: F, $PMT \gg Q$

F and **PMT** contribution are determined using data from pure Xe

 $N_{FL} \rightarrow EL$ emitted photons

The CF₄ case

- EL Y well preserved if compared with R_E
- Lower $\mathbf{R}_{\mathbf{E}}$ dependence on E/N

- Here, the real R_E is showed (because the CF4 high attachment resulted in some right-tailed spectrums)
- But, in next slides previous z=0
 extrapolation adopted although ignoring
 right-tailed spectrums

Comparison: Y and R_E for the same $D_{3D} = \sqrt[3]{D_L \times D_T \times D_T} \sim 2.75 \ mm/m$

- CO2 have a good R_E (but it degrades abruptly for higher concentrations)
- CH4 have the best R_E, even with the worst Y
- CF4 have the best Y, but a terrible R_E

Concerning Q

- 1. Using **F**, **k** and σ_G/G estimated wirh **pure Xe** \rightarrow PMT and Fano contributions are subtracted to R_E
- 2. The **Q** (relative fluctuations in the number of **EL photons**) is estimated
 - CH4: Q negligible (≪ F)

 $E/N (\times 10^{-17} \text{ V} \cdot \text{cm}^2 \cdot \text{atom}^{-1})$

CO2: Q ~ ½ Fano (for conc. in ROI)

CF4: $Q \gg$ Fano (high attachment) 13 14 E/N (×10⁻¹⁷ V·cm²·atom⁻¹) 0.4 ---0.013 +/- 0.006 ---0.360 +/- 0.015 | 0.35 0.35 0.6 0.6 -0.041 +/- 0.010 00.550 +/- 0.019 0.109 +/- 0.009 0.3 0.174 +/- 0.012 0.5 1.530 +/- 0.040 → 0.174 +/- 0.012 0.25 0.25 **▽**0.299 +/- 0.017 0.4 0.2 0.2 o 0.3 \div 0.393 +/- 0.020 0.150.15 **Fano** 0.2 0.1 0.1 0.15 ± 0.02 0.05 0.05 0.1 0.1 -0.05 -0.0513

↓ Same method as in CO2 and CH4, but ignoring right-tailed pulse distributions

E/N (\times 10⁻¹⁷ V·cm²·atom⁻¹)

The compromise R_E vs D_{3D} – CO_2 , CH_4 and CF_4

N_{EL} vs D_{3D} – CO_2 , CH_4 and CF_4

S1

~80% light lose expected in CO2 and CH4 (almost 0% for CF4) from simulated scintillation probability (D. González-Díaz et al, same simulations are in agreement with experimental data for S2 at 1bar)

Conclusion:

Low quenching, high transparency \rightarrow **S1** and **S2** slightly affected High attachment \rightarrow R_E extremely degraded (dominated by Q) Stable, but concentrations (\sim 100ppm) too low to handle and measure

S1 and S2 affected by quenching and transparency

Good $\mathbf{R}_{\mathbf{E}}$ (attachment still low) in concentration ROI

Absorbed by hot getters and transformed CO (CO2 specific cold getters)

S1 and S2 affected by the high quenching

Excelente \mathbf{R}_{E} (Q \sim 0), if E/N is increased (as EL threshold) S2 improved and \mathbf{R}_{E} almost the same as in pure Xe

Stable & high concentrations (\sim 4000ppm), easy to handle and measure

 $Xe-M_x$ may improve spatial resolution in a EL optical TPC, keeping S1, S2 and R_E

Thank you for your time

References

- 1. Gómez Cadenas, J.J. et al. "Present Status and Future Perspectives of the NEXT Experiment." *Advances in High Energy Physics* 2013 (2014).
- 2. C.D.R. Azevedo, L.M.P. Fernandes, E.D.C. Freitas et al., "An homeopathic cure to pure Xenon large diffusion," *Journal of Instrumentation*, vol. 11, C02007–C02007, (2016). doi:10.1088/1748-0221/11/02/C02007.
- 3. C.A.B. Oliveira, M. Sorel, J. Martin-Albo et al., "Energy resolution studies for NEXT," *Journal of Instrumentation*, vol. 6, P05007–P05007, (2011). doi:10.1088/1748-0221/6/05/P05007.
- 4. C.M.B. Monteiro, L.M.P. Fernandes, J.A.M. Lopes et al., "Secondary scintillation yield in pure xenon," *Journal of Instrumentation*, vol. 2, P05001–P05001, (2007). doi:10.1088/1748-0221/2/05/P05001.
- 5. L.M.P. Fernandes, E.D.C. Freitas, M. Ball et al., "Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter," *Journal of Instrumentation*, vol. 5, P09006–P09006, (2010). doi:10.1088/1748-0221/5/09/P09006.
- 6. J. Escada, T.H.V.T. Dias, F.P. Santos et al., "A Monte Carlo study of the fluctuations in Xe electroluminescence yield: pure Xe vs Xe doped with CH4 or CF4 and planar vs cylindrical geometries," *Journal of Instrumentation*, vol. 6, P08006–P08006, (2011). doi:10.1088/1748-0221/6/08/P08006.
- 7. C.D.R. Azevedo, D. González-Díaz et al., "Microscopic simulation of Xenon-based gaseous optical TPCs in the presence of molecular additives," (2016)

Backup

Conclusion: mixture purification

❖ Purifying the Xe - M_x gas:

Specialized cold getters could be used to purify Xe + CO2/CH4/CF4
This getters absorbs the main contaminants: **CO**, H2O, O2, and H2... **However they don't absorb N2**

Radon?

Media	Gases Purified	Impurities Removed	Outlet Performance	Regenerable	Dangerous Goods (DG) Classification
		H ₂ O, O ₂ , CO, H2	< 1 ppbV		
804	CO ₂	Volatile Acids, Refractories, Condensable Organics (>100amu), Volatile Base	< 5 pptV	YES	DG - UN2881 Class 4.2
		Non-Condensable Organics (>45 amu)	< 100pptV		
905	C ₂ F ₆ , C ₂ H ₆ , C.F., C.H., C ₂ F ₄ H ₂ , C ₄ F ₈ , C ₄ H ₄₀ , CCl ₄ , CF ₄ , CH ₄ , CHF ₅ , SF ₆	H ₂ O, O ₂ , CO, CO ₂ , H ₂ NMHCs*	< 1 ppbV	YES	DG - UN2881 Class 4.2

Conclusion: remove M_x from the Xe

To remove remaining CH4 (small concentration will not saturate getters)

Cool	ing	baths

· -		1
Liquid N ₂	Ethanol	-116
Liquid N ₂	Ethyl bromide	-119
Liquid N ₂	Acetaldehyde	-124
Liquid N ₂	Methylcyclohexane	-126
Liquid N ₂	n-Propanol	-127
Liquid N ₂	n-Pentane	-131
Liquid N ₂	1,5-Hexadiene	-141
Liquid N ₂	Isopentane	-160
Liquid N ₂	(none)	-196

Temp. (°C)

Temperature (°C)

Vapour Pressure (bar or 0.1 MPa)

0,08

0,04

0.02

-200 -190 -180 -170 -160 -150 -140 -130 -1 Temperature (°C)

The pulse height distribution, of a driftless GSPC

← pulse height distribution of 5.9-keV (⁵⁵Fe) x-rays absorbed in a driftless GPSC filled with pure Xe (at ~800 torr)

← Different depth (z) absorbed x-rays → left-tailed pulse-height distribution (gaussian & exponential absorption)

R_E is estimated for zero x-ray penetration (FWHM/E of the first gauss)

The CF₄ case

Huge **uncertainty** in low RGA's measurements:

Initial/max values from P-V calculation are also shown

! There is not a systematic error – RGA's calibration was successfully tested after taking data!

- **EL Y** well preserved if compared with R_{E}
- Lower R_E dependence on E/N

With 1 more free fitting parameter (attachment), $\mathbf{R}_{\mathbf{E}}$ (z=0) extrapolation could be not reliable:

- ← Here, the real driftless GSPC R_E
- Next, previous z=0
 extrapolation used but
 ignoring right-tailed
 spectrums

What about NEXT - $Q_{\beta\beta}$ at 10 bar, $EL_{gap} = 5$ mm

$$R_E = 2.35 \sqrt{\frac{F}{\overline{N}_e} + \frac{Q}{\overline{N}_e} + \frac{1}{\overline{N}_{ep}} + \frac{\sigma_G^2}{\overline{N}_{ep}G^2}}$$

$$\overline{\textbf{N}}_{\textbf{e}} = \frac{E_x}{w_{ion}} = \frac{2.457 \text{MeV}}{22 \text{ eV}}, \qquad \frac{\textbf{F} \sim 0.15 \ \mp 0.02}{\overline{\textbf{N}}_{\textbf{ep}} = k \cdot \overline{N}_e \cdot \overline{N}_{EL}}$$

Expected features in NEXT-100:

- EL photon collection efficiency (k) = 0.01
- Relative fluctuations in PMT's gain $(\sigma_G/G) = 0.6$
- 1. Q(10bar) \cong 2 × Q(1bar) since $\frac{10bar}{1bar}$ × $\frac{5mm\ gap}{25mm\ gap}$, if dominated by attachment \rightarrow in CH4 Q(1bar) = Q(10bar)
- $\begin{array}{ll} \textbf{Z.} & \overline{N}_{EL} \text{(10 bar)} \cong \overline{N}_{EL} \text{(1 bar)} \times P_{scint} \text{(10bar)} / P_{scint} \text{(1bar)} \\ & \text{from simulations (Diego-Azevedo), when reduction in Y is} \\ & \text{due to e}^- \text{ cooling (threshold) and quenching, ie. in \textbf{CH4} and \textbf{CO2}} \\ \end{aligned}$
- 3. For CF4 the more optimist scenario is adopted: Q for max(E/N), max/initial concentrations adopted, and $\overline{N}_{EL}(10 \text{ bar}) \cong \overline{N}_{EL}(1 \text{ bar}) 20\%$ lower at 10bar in ROI (2 × att)
- **4. Transparency** to EL photons after 2 m in **CO2** 100% in CH4 and CF4

The compromise N_{EL} vs D_{3D} – CO_2 , CH_4 and CF_4

Preliminary results: CO₂ and CH₄

 $P(torr)/N \cong 3.034 \times 10^{-17}$

❖ Which mixture is best for NEXT?

 $\mathbf{D}_L \otimes \mathbf{D}_T \pmod{\sqrt{\mathbf{m}}}$ $\mathbf{CO_2} \quad \mathbf{CH_4}$

~ 3 (28%) @ 2.8 (77%) ~0.11 % ~0.55 %

~2.2 (47%) @ ~2.6 (78%) ~0.17 % ~1.04 %

Subtracting Fano and PMT contributions (preliminary)

using estimated **F** and **k** in **pure Xe**

Neutrino mass and $\beta\beta0\nu$ rate

 $\beta\beta0\nu$ decay rate

 m_{etaeta}

 m_{ν_1} , m_{ν_2} , m_{ν_3}

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \left| M^{0\nu} \right|^2 m_{\beta\beta}^2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right|$$

High source of uncertainty

Nuclear Matrix of Elements (NME)

NEXT — concept

- 1. ¹³⁶Xe decays $\rightarrow 2e^-$
- 2. Primary electrons (P_{e^-}) + Primary scintillation (S1)
- 3. S1 at the energy plane $\rightarrow t_0$
- 4. Pe⁻drift towards EL region $(\sim 1 mm/\mu s @ \sim 0.5 KV/cm/bar)$
- 5. P_e- accelerated in EL region → electroluminescence (S2) $(\sim 4 \ KV/cm/bar) (S2 \sim 2 \mu s)$
- 6. S2 by tracking plane + t_0 \rightarrow 3D event topology
- 7. S2 by energy plane → precise energy of event

\downarrow **Topology signature** (simulation) \downarrow

2 blobs →

NEXT — prototypes

(zx proj.)

NEXT-DEMO \sim 1. 5 kg @ 10 bar

Demonstrate NEXT technology

 $R_E \sim 0.7\% \Rightarrow$ at $Q_{\beta\beta}$

(zx proj.)

NEXT phase I – NEW $\sim \! 10~kg$ of 136 Xe

- NEXT-100 at scale 1:2 @ 20% of photosensors
- 1º radiopure underground detector

 $\leftarrow R_E \sim 0.5\%$ at Q_{etaeta}

RGA's Calibration

↑ RGA's example spectrum of a calibration point (0.088 %)

RGA's Calibration

Calibration line:

← As expected RGA's response is **linear**, at least within ROI

- Several methods were used to extrapolate the background of CO2 after mixing, this one showed the best R²
- This background estimation method will be also used in main mixtures

Results — RGA's example spectrum $\rightarrow co2/(Xe + co2) = 0.44\%$

- 1) Pure Xe with getters at 250° C is recorded for background quantification at the beginning of each mixture \Rightarrow $CO2/(Xe + CO2) \approx 0.1 \%$ changing at each mixture
- 2) Getters are set to 80° C one hour before CO2 is introduced → for a more efficient mixing, Xe + CO2 are liquefied after adding the CO2.
- ➤ 0.44 % introduced (estimated from volume-pressure calculation) 0,33 % @ after 21h (estimated from RGA data)

CO2 percentage in relation to Xe + CO2 → corrected using

RGA's calibration line

 EL measure was done in the last hour (44h – 45h)

Partial pressure at mass 28 rises in time after adding CO2 \rightarrow 28 is the main peak of N2 and CO, and a secondary peak of CO2 (\sim 5 % \rightarrow obtained in calibration)

A typical non-explained perturbation → usually, these perturbations are stronger in H2O and Xe, and often periodic (T=24h)

Results - CO production

Pressure at mass 28 rises after adding CO2 -> Mass 28 is a combination of:

If the growth at 28 was just coming from CO2, it would not be continually rising **Is this due to CO production?**

- Nitrogen (major fragmentation peak)
- CO (major fragmentation peak)
- CO2 (secondary fragmentation peak)

Assuming:

- N2 keeps constant after adding CO2
- Experimental cracking pattern of CO2 obtained during calibration
- CO is zero before CO2

We can:

Estimate CO pressure at mass 28 by subtracting CO2 and N2 contributions

Results — Getters' temperature & CO

➤ Two different mixtures became stable at 0.18 % → in the last one we raised up the temperature of getters in order to absorb CO2 → however CO have raised even more as the getters' temperature was increased.

Temperatures were raised up just for some time, then they are cooled down to 80° C again

NEXT — towards the inverted hierarchy

ββ0ν **unlikely** with current experiments

Ton scale + background reduction/rejection

R (3KV), Dt, Dl and v in CH₄

R (3KV) vs D3d and concentration in CH₄

R (3KV), Dt, Dl and v in CF₄

R (3KV), Dt, Dl and v in CH₄

R (3KV), Dt, Dl and v in CO₂

R (3KV), Dt, Dl and v in CO₂

CF₄ right-left real R

R(z=0) without attachment - CF₄

