# On the possibility of positive ion detection in gaseous TPCs

LIOR ARAZI

WEIZMANN INSTITUTE OF SCIENCE

8<sup>th</sup> Symposium on Large TPCs for Low-Energy Rare Event Detection 5-7 December 2016, Paris, France

### Motivation: accurate track reconstruction in rare-event searches

#### How accurate?

$$\sigma_{ions} = \sqrt{2Dt} = \sqrt{\frac{2k_BT}{q_e} \cdot \frac{L}{E}} = 0.225 \sqrt{\frac{L}{E}} \quad (\sigma \& L \text{ in } cm, E \text{ in } \frac{V}{cm})$$

E.g. 10 bar Xe, E = 300 V/cm

$$\sigma_{ions} = \begin{cases} 1.3 \ mm & L = 1 \ m \\ 1.8 \ mm & L = 2 \ m \end{cases}$$

Electron diffusion under the same conditions:

$$\sigma_{electrons} \approx \begin{cases} 13 \ mm & L = 1 \ m \\ 18 \ mm & L = 2 \ m \end{cases}$$

#### Problem: ions are slow

Drift velocity of  $\sigma(10^2)$  cm/s, thermal kinetic energies



#### Detection must rely on a **potential-driven** process

## Luckily, Nature provided us with Auger neutralization (AN)

#### What is AN?

- When a positive ion approaches a surface a first electron tunnels out and neutralizes it, leaving the system with excess energy
- This energy is simultaneously transferred, in an Auger-like process, to a second electron which may be emitted into the gas

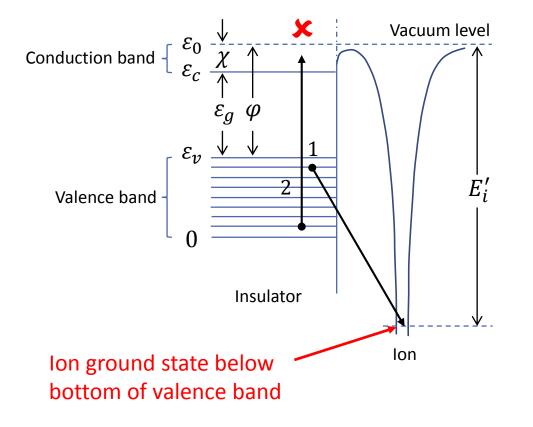
#### **Historical context**

- First suggested by S. S. Shekhter in 1937
- Experimental and theoretical foundations laid by H. D. Hagstrum (Bell Labs) in 1953-1961: studied AN for single ions of all noble gases, impinging on metals (W, Mo) and semiconductors (Si, Ge)
- Was of central importance to the development of plasma panel displays
- Still an active field in surface science theory

### Key features of AN

- Driven by potential energy  $\rightarrow$  ok for thermal ions
- Occurs for both atomic and molecular ions
- Occurs for metals and insulators/semiconductors
- Necessary condition: the ionization energy of the ion close to the surface must be larger than twice the work function:  $E'_i > 2\varphi$
- $\gamma_i$  : secondary electron yield = probability of ion-induced secondary electron emission (IISEE)
- $\gamma_i$  generally increases with increasing  $E'_i$  and decreasing  $\varphi$ . Can be as large as tens of %

### Other mechanisms?


- In some cases AN is the only possible mechanism for charge transfer (e.g., He<sup>+</sup> on metals and semiconductors). This requires that the ion ground and excited states are not resonant with occupied states in the solid.
- When resonant processes are possible secondary electron emission can still occur, but with lower probabilities. The condition  $E'_i > 2\varphi$ still holds.

## Auger neutralization – external emission



- Energy lost by electron 1 is taken by electron 2
- If sufficiently large and electron 2 starts from the upper valence band it may be emitted externally

## Auger neutralization – internal emission



 If electron 2 starts from the lower valence band it may enter the conduction band without external emission

#### • Also useful?

S. Shchemelinin and A. Breskin, "Observation of electron excitation into silicon conduction band by slowion surface neutralization", arXiv:1607.02924

### IISEE yields of noble gas ions

Target: atomically clean molybdenum, work function 4.3 eV

| ion             | $E_i[eV]$ | $E_i - 2\varphi[eV]$ | <b>γ</b> <sub><i>i</i></sub> [%] |
|-----------------|-----------|----------------------|----------------------------------|
| He⁺             | 24.59     | 16.0                 | 30                               |
| Ne <sup>+</sup> | 21.56     | 13.0                 | 25.4                             |
| Ar <sup>+</sup> | 15.76     | 7.2                  | 12.2                             |
| Kr⁺             | 14.00     | 5.4                  | 6.9                              |
| Xe+             | 12.13     | 3.5                  | 2.2                              |

Monolayer of N<sub>2</sub> on W reduces  $\gamma_i$  by a factor ranging from 1.6 (He) to 6.5 (Xe)

H. D. Hagstrum, Phys Rev 104 (1956) 672

### IISEE yields of noble gas ions

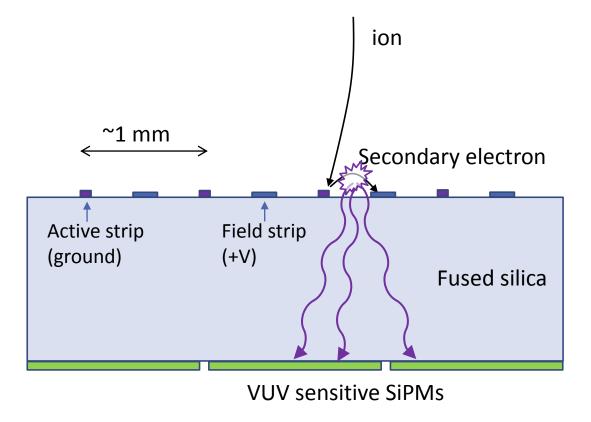


### So – how about xenon?

Searching for  $\beta\beta0\nu$  in HPXe at the ton scale  $\rightarrow$  compromise between energy resolution and accuracy in track reconstruction

| Design option                                                  | Intrinsic FWHM<br>Energy<br>resolution | rms diffusion<br>(1 m) | rms diffusion<br>(2 m) |            |
|----------------------------------------------------------------|----------------------------------------|------------------------|------------------------|------------|
| Pure Xe                                                        | 0.33%                                  | ~13 mm                 | ~18 mm                 | ן          |
| Xe + 0.05% CO <sub>2</sub>                                     | 0.47%                                  | 4.8 mm                 | 6.8 <i>mm</i>          |            |
| Xe + 0.5% CH <sub>4</sub>                                      | 0.53%                                  | 3.1 <i>mm</i>          | 4.4 mm                 | <b>-</b> > |
| Xe + 1.0% CH <sub>4</sub>                                      | 0.8%                                   | 2.3 mm                 | 3.2 <i>mm</i>          |            |
| Pure Xe<br>using ions for topology<br>and electrons for energy | 0.33%                                  | 1.3 mm                 | 1.8 <i>mm</i>          |            |

\* Azevedo et al, JINST 11 (2016) C02007 arXiv:1511.07189 – 10 bar, 300 V/cm


### Let's take this one step at a time

- $1 \cdot 10^5$  electron-ion pairs for event at  $Q_{\beta\beta}$
- All Xe<sup>+</sup> ions immediately ( $\sim 10^{-10}$  s) convert to Xe<sub>2</sub><sup>+</sup>
- Electrons quickly reach EL region near anode (at +HV)
- Energy + (smeared) track image measured by electrons EL signal
- Xe<sub>2</sub><sup>+</sup> ions reach cathode plane within <1 s
- Xe<sub>2</sub><sup>+</sup> ions ionization energy = 11.2 eV (lowest of all impurities) → no charge-exchange collisions → all Xe<sub>2</sub><sup>+</sup> ions make it to cathode

### Now here comes the fun part

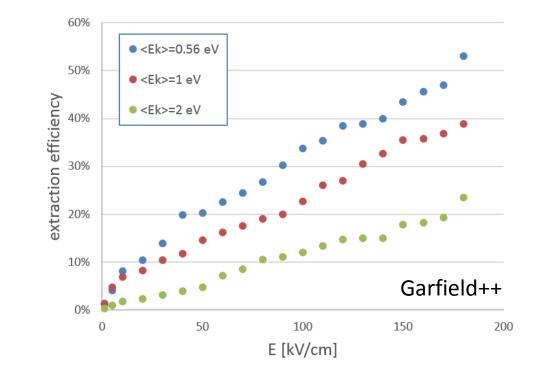
- Cathode plane comprised of tiled array of fused silica plates, each with MSGC-like pattern of active strips at ground, interlaced with field strips at modest +HV. Spacing between active strips ~1 mm.
- Ions landing on active strips release secondary electrons by AN
- Emitted electrons follow field lines to positive field strips. Field tuned to gain of  $\sigma(10) \rightarrow \sigma(10^3)$  photons per detected ion
- EL light produced by electrons recorded by dense array of VUV-SiPMs immediately behind cathode plane
- Recorded light pattern provides track topology with spatial resolution governed by ion diffusion (+ some smearing by readout granularity)

#### Cathode plane cartoon



#### Some numbers

• EL signals sufficiently large ( $\sigma(10^3)$  photons)


Ion Detection efficiency =  $\gamma_{eff} = \gamma_i \cdot \varepsilon_{ext}$ 

where  $\varepsilon_{ext}$  is the extraction efficiency = probability that the emitted electron is not backscattered to the surface

- $\varepsilon_{ext}$  can be readily >20%  $\rightarrow \gamma_i$  of a few % will provide several hundred detected ions (out of  $1 \cdot 10^5$ )
- E.g.  $\gamma_i = 2\% \& \varepsilon_{ext} = 20\% \rightarrow 400$  detected ions with ~0.5 mm spacing for 20 cm track

## Extraction efficiency of electrons into 10 bar Xe at room temperature

For  $E'_i = 10 - 11 \text{ eV}$ ,  $\varphi = 3 - 4 \text{ eV}$ :  $\langle E_k \rangle \approx \frac{1}{3} E_k^{max}$  $\approx 0.6 - 1.6 \text{ eV}$ 



#### Some more numbers

- For 6 mm SiPMs with array PDE=10%, 3 mm behind the cathode plane, the emission of 2000 EL photons into  $4\pi$  gives  $\sigma_{xy} \approx 0.5 mm$  for center-of gravity (COG) determination
- For avalanche gain = 10, the required EL is then ~200 photons/e over a trajectory of ~0.5-1 mm (NEXT-100 TDR: 2500 photons/e over 5 mm)
- To avoid continuous ion feedback we need  $gain \cdot \gamma_{eff} < 1$  readily satisfied for gain of  $\sigma(10)$  and  $\gamma_{eff} < 1\%$
- EL signals will last  $\sigma(10 100 \text{ ns})$ . Contribution of SiPM dark counts (even if  $10^5 \text{ Hz/mm}^2$ ) will be small over the total area of the SiPM pixels used for COG
- EL photon feedback expected to be low (for active material of low QE and thin strips)
- BUT: Field emission must be kept very low (roughly <10<sup>-14</sup> A/cm<sup>2</sup>)

#### Candidate materials

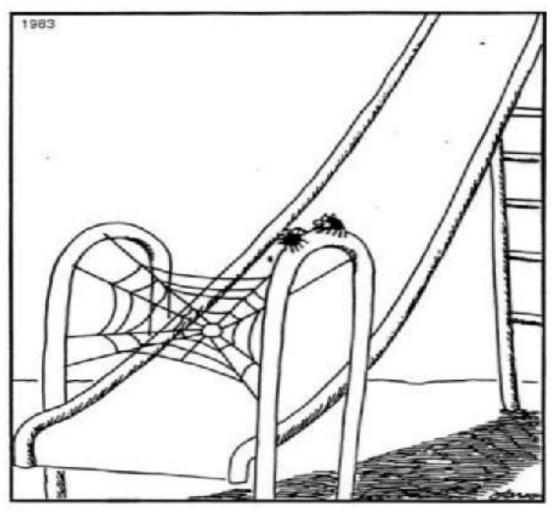
#### CVD diamond with negative electron affinity (NEA)

- Either nanoparticles (UNCD ultrananocrystalline diamond) or single-crystal layers
- 'Tunable' NEA depends on surface termination (e.g. by H, D or Mg) and annealing → work function can be tuned to 3-4 eV

(at  $\varphi = 4.6 \ eV \ \gamma_i = 2\%$  for Xe ions; naively  $\varphi = 3 \ eV \rightarrow \gamma_i \approx 10\%$ )

- Passivation through surface termination  $\rightarrow$  no monolayer of impurities
- Can be used to form thin strips on fused silica
- Field emission may be high for UNCD (much less for single-crystal layers), but can possibly be kept low enough by tweaking the parameters

#### Candidate materials


Thin MgO film on molybdenum

- Few atomic layers of MgO grown on single-crystal Mo
- Work function 3.2 eV
- Passivation provided by MgO  $\rightarrow$  no monolayer of impurities
- No known issues with field emission

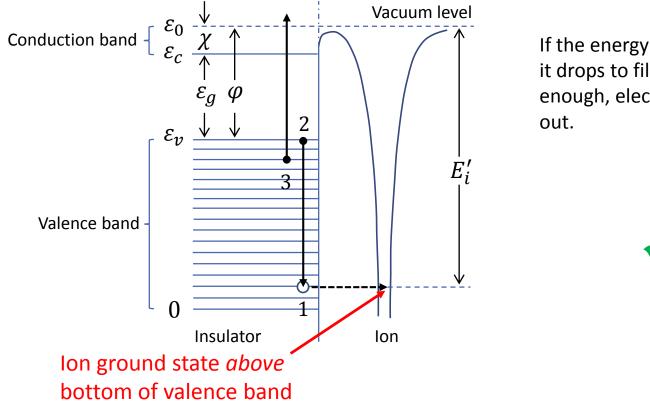
Stuckenholz et al, J. Phys. Chem. C 2015, 119, p. 12283

### Summary and outlook

- Positive ion detection in ton-scale  $\beta\beta0\nu$  searches in HPXe may enable having both superb intrinsic energy resolution (0.3% FWHM at  $Q_{\beta\beta}$ ) and accurate track reconstruction ( $\sigma < 1.8 \text{ mm over 2 m drift}$ )
- It will also enable having a  $t_0$  signal from S1 (likely lost for Xe + admixtures)
- Since we start with 10<sup>5</sup> ions a modest IISEE yield of a few % will be sufficient for detecting several hundred ions with sub-mm spacing → should be enough to identify the two blobs + other track features
- Such yields appear at hand using existing materials (but must keep an eye on field emission)
- First samples for testing are expected soon from Argonne National Laboratory
- Careful studies required to translate this to actual sensitivity to  $\beta\beta 0\nu$
- Can AN be also used in directional dark matter searches?

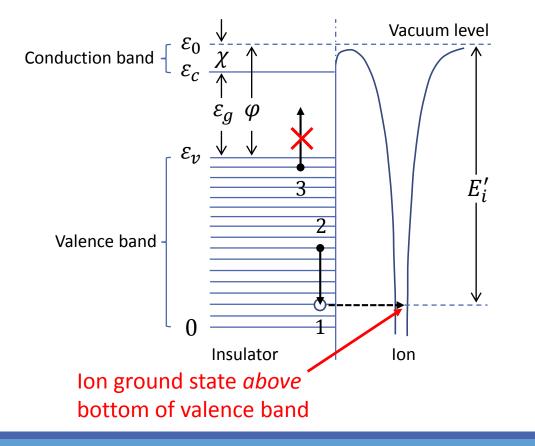


"If we pull this off, we'll eat like kings."


G. Larson, "The Far Side" (1983)

### Backup slides

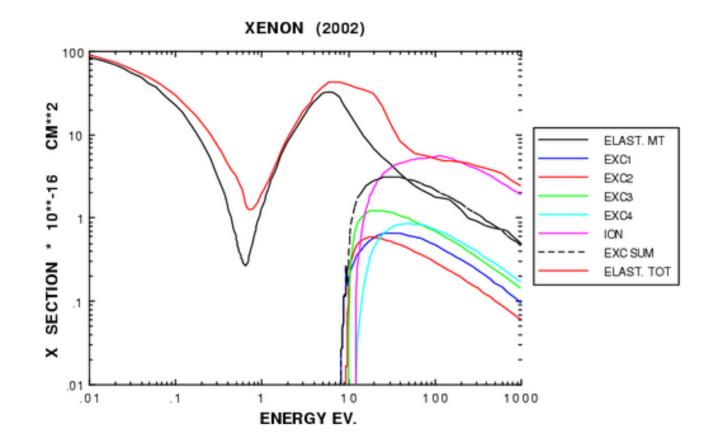
### Resonance neutralization

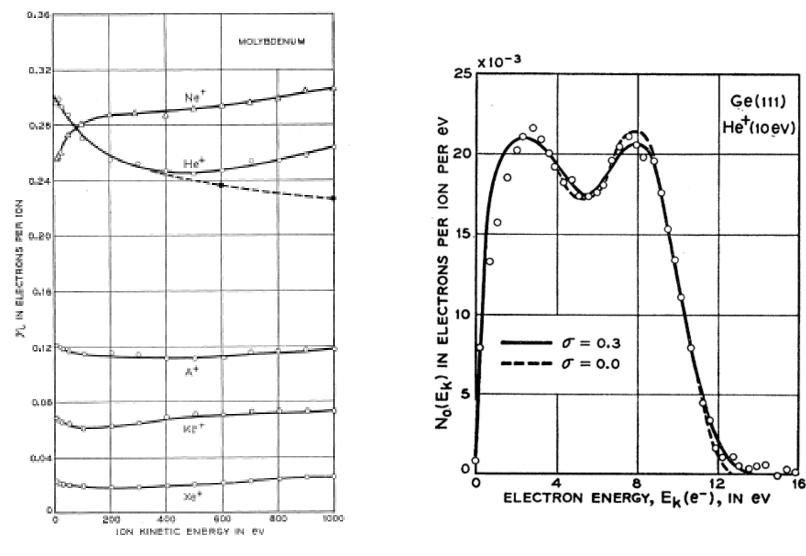

- Dominant when the ground state of the ion lies above the bottom of the valence band (in insulators)
- A first valence electron tunnels resonantly to the ion ground state and neutralizes it, without losing energy
- A second valence electron drops to fill the hole left by electron 1
- The energy lost by electron 2 can be taken by a third electron only if it puts it in the conduction band (and may then be emitted) otherwise it will be lost through other channels.
- Electron emission out of the solid still requires  $E'_i > 2\varphi$  and happens with lower probability than the pure AN case.

## Resonance neutralization – external emission



If the energy lost by electron 2 as it drops to fill the hole is large enough, electron 3 can make it out.

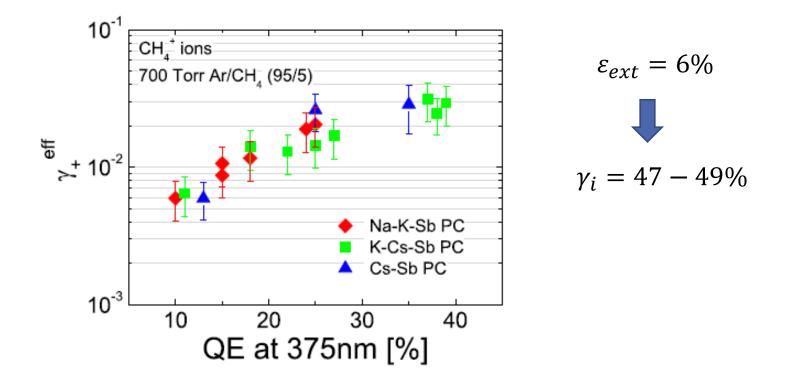

## Resonance neutralization – forbidden transitions




If the energy lost by electron 2 is smaller than the band gap the transition is forbidden and the excess energy is released by other mechanisms (e.g., photon emission).

X

### Xe cross sections (Magboltz)






H. D. Hagstrum, Phys Rev 104 (1956) 672

H. D. Hagstrum, Phys Rev 122 (1961) 83

# $\gamma_i$ and $\gamma_{eff}$ for $CH_4$ ions on bialkali photocathodes



Lyashenko et al, J. Appl. Phys. 106 (2009) 044902