Status of the $B \rightarrow X_c \tau \nu$ Calculation

Farnoush Shahriaran

Universität Siegen Theoretische Physik I

in collaboration with Thomas Mannel

Siegen, 18.01.2016

• BaBar reported 3.4 σ deviation from SM in the combination of the ratios R(D) and $R(D^*)$:

$$R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau\bar{\nu})}{\Gamma(B \to D^{(*)}\ell\bar{\nu})}$$

	BaBar	Belle	SM
R(D) $R(D^*)$	$\begin{array}{c} 0.440 \pm 0.058 \pm 0.042 \\ 0.332 \pm 0.024 \pm 0.018 \end{array}$	$\begin{array}{c} 0.430 \pm 0.091 \\ 0.405 \pm 0.047 \end{array}$	$\begin{array}{c} 0.297 \pm 0.017 \\ 0.252 \pm 0.003 \end{array}$
correlation	neglected	-0.27	0.252 ± 0.005

- Learn from inclusive = \sum exclusive $\mathcal{B}(B^- \to X_c \ell \bar{\nu}) = (10.92 \pm 0.16)\%$ and $R(X_c) = 0.222 \pm 0.003$ [hep-ph/9401226, hep-ph/9401239] $\Rightarrow \mathcal{B}(B^- \to X_c \tau \bar{\nu}) = (2.42 \pm 0.05)\%$, LEP : $\mathcal{B}(b \to X \tau^+ \bar{\nu}) = (2.41 \pm 0.23)\%$
- The $R(D^{(*)})$ data imply:

$$Data : \mathcal{B}(\bar{B} \to D^* \tau \bar{\nu}) + \mathcal{B}(\bar{B} \to D \tau \bar{\nu}) = (2.78 \pm 0.25)\%$$

• SM prediction for $\Gamma(B \to D^{**} \tau \bar{\nu}) \gtrsim 0.2\%$

Inclusive decay rate

$$d\Gamma_{sl} = \frac{G_F^2 |V_{cb}|^2}{2} W_{\mu\nu} dL^{\mu\nu}$$

Leptonic tensor

$$L^{\mu\nu} = \frac{1}{2} Tr[(p_{\ell} + m_{\ell})\gamma^{\mu}(p_{\nu})\gamma^{\nu}(1 - \gamma_{L})]$$

Hadronic tensor

$$W^{\mu\nu} = (2\pi)^3 \sum_{X} \delta^4(p_b - q - p_X) \langle B(p) | J^{\mu\dagger} | X \rangle \langle X | J^{\nu} | B(p) \rangle \qquad \begin{array}{l} q = p_\ell + p_\nu \\ J^{\mu} = \bar{c} \gamma^{\mu} (1 - \gamma_5) b \\ \text{can be decomposed as:} \end{array}$$

$$W^{\mu\nu} = -W_1 g^{\mu\nu} + W_2 v^{\mu} v^{\nu} + i W_3 \epsilon^{\mu\nu\rho\sigma} v_{\rho} q_{\sigma} + W_4 q^{\mu} q^{\nu} + T_5 (q^{\mu} v^{\nu} + q^{\nu} v^{\mu})$$

Optical theorem : $W_{\mu\nu}$ be expressed as the discontinuity across the cut in the time order product of weak currents in a B meson

$$W_{\mu
u} = -rac{1}{\pi}ImT_{\mu
u}$$

• Starting from the correlator of two hadronic currents

$$T_{\mu\nu} = \frac{1}{2m_B} \int d^4x \, e^{-iq \cdot x} \langle B(p) | T\{J^{\dagger}_{\mu}(x)J_{\nu}(0)\} | B(p) \rangle$$

• $T^{\mu\nu}$ can be decomposed into

$$T^{\mu\nu} = -T_1 g^{\mu\nu} + T_2 v^{\mu} v^{\nu} + iT_3 \epsilon^{\mu\nu\rho\sigma} v_{\rho} q_{\sigma} + T_4 q^{\mu} q^{\nu} + T_5 (q^{\mu} v^{\nu} + q^{\nu} v^{\mu})$$

 $T_i(q^0, q^2)$ is the imaginary part of the $T_i(q^0, q^2)$, using the identity:

$$-\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{z+i\epsilon}\right) = \frac{(-1)^n}{n!} \delta^{(n)}(z)$$

Triple differential decay rate

W

$$\begin{aligned} \frac{d\Gamma}{dq^2 dE_\ell dE_\nu} &= \frac{G_F^2 |V_{cb}|^2}{(2\pi)^3} \theta(z_+) \theta(z_-) \Big\{ W_1 q^2 + W_2 \Big(2E_\ell E_\nu - \frac{q^2}{2} \Big) + W_3 (q^2 (E_\ell - E_\nu)) \\ &+ \frac{1}{2} m_\ell^2 \Big(-2W_1 + W_2 - 2W_3 \left(E_\nu + E_\ell \right) + q^2 W_4 + 4E_\nu W_5 \Big) \Big\} \end{aligned}$$

Background-Field c-quark propagator:

$$iS_{BGF} = \frac{1}{\not Q + \not k - m_c}, \quad Q = m_b v + k, \ k = iD$$

- multiplying iS_{BGF} to the appropriate Dirac matrices for the left handed current $\Gamma_{\mu} = 1/2\gamma_{\mu}(1-\gamma^5)$.
- expanding of the iS_{BGF} to n^{th} order.
- evaluating the forward matrix elements of operators

$$\langle B(p)|b_{v,lpha}(iD_{\mu_1})...(iD_{\mu_{n-1}})b_{v,eta}|B(p)
angle$$

in terms of the *basic parameters* for a certain order in $1/m_b$.

Basic parameters at $1/m_b^n$

• ...at $1/m_b^2$

$$2M_B\mu_{\pi}^2 = -\langle B(p)|\bar{b}_{\nu}(iD)^2 b_{\nu}|B(p)\rangle$$

$$2M_B\mu_G^2 = \langle B(p)|\bar{b}_{\nu}(iD_{\mu})(iD_{\nu})(-i\sigma^{\mu\nu})b_{\nu}|B(p)\rangle$$

• ...at $1/m_b^3$

$$2M_{B}\rho_{D}^{3} = \langle B(p)|\bar{b}_{v}(iD_{\mu})(ivD)(iD^{\mu})b_{v}|B(p)\rangle$$

$$2M_{B}\rho_{LS}^{3} = \langle B(p)|\bar{b}_{v}(iD_{\mu})(ivD)(iD_{\nu})(-i\sigma^{\mu\nu})b_{v}|B(p)\rangle$$

 $\rightarrow W_i$'s can be expanded in series of Λ_{QCD}/m_b

$$W_{i} = w_{i}^{(0)} + \frac{\mu_{\pi}^{2}}{2m_{b}^{2}}w_{i}^{(\pi,0)} + \frac{\mu_{G}^{2}}{2m_{b}^{2}}w_{i}^{(G,0)} + \frac{2\rho_{D}^{3}}{3m_{b}^{3}}w_{i}^{(D,0)} + \frac{2\rho_{LS}^{3}}{3m_{b}^{3}}w_{i}^{(LS,0)}\dots$$

• Diagrams contributing to $\mathcal{O}(\alpha_s)$ from one-gluon emission

Vertex correction diagrams.

• The hadronic tensor recieves contributions of order α_s from one-gluon emission at the tree level

$$b(p) \to c(p') + \ell(p_\ell) + \bar{\nu}(p_\nu) + g(k)$$

Integrated over the charm-gluon phase space (r = p' + k) and from one-loop virtual corrections to the b(p) → c(p') + ℓ(p_ℓ) + ν̄(p_ν):

$$\rightarrow W^{\mu\nu}(p,q) = W^{\mu\nu}_{\rm Real}(p,q) + W^{\mu\nu}_{\rm virtual}(p,q)$$

• Wi's are known.[V.Aquila, P. Gambino, G. Ridolfi and N.Uraltsev (2005)]

 W_i 's can be expanded in series of α_s and Λ_{QCD}/m_b

$$W_{i} = w_{i}^{(0)} + \frac{C_{F}\alpha_{s}}{\pi}w_{i}^{(1)} + \frac{\mu_{\pi,G}^{2}}{2m_{b}^{2}}w_{i}^{(\pi,G,0)} + \frac{\rho_{D,LS}^{3}}{3m_{b}^{3}}w_{i}^{(D,LS,0)} + \mathcal{O}(\alpha_{s}^{2}, 1/m_{b}^{4})$$

Phase space limits

dimensionless variables:

$$y = \frac{2E_{\tau}}{m_b}, x = \frac{2E_{\nu}}{m_b}, \eta = \frac{m_{\tau}^2}{m_b^2}, \rho = \frac{m_c^2}{m_b^2}, q^2 = \frac{q^2}{m_b^2}$$
$$y_{\pm} = \frac{1}{2} \left(y \pm \sqrt{y^2 - 4\eta} \right), q_{\pm} = v \cdot q \pm \sqrt{(v \cdot q)^2 - q^2}$$

• The dotted (green) curve shows the free-quark decay result, the orange curve include $\mathcal{O}(\alpha_s)$ correction and the red (blue) curve includes both α_s and Λ^3_{QCD}/m^3_b (Λ^2_{QCD}/m^2_b) correction.

Numerical results

m_b	m_c	μ_π^2	μ_G^2	$ ho_D^3$	$ ho_{LS}^3$	$V_{cb} \times 10^{-3}$
4.548	1.092	0.428	0.344	0.158	-0.146	42.24

In kinetic scheme ($au_B = 1.582(7) \mathrm{ps}_{\mathrm{[P. Gambino, C. Schwanda (2014)]}}$

BR %	α_s	$\alpha_s + 1/m_b^2$	$\alpha_s + 1/m_b^3$	[1] <i>SM</i>	Data
$BR_{ce\nu}\%$	11.40	10.87	10.48	10.66	10.92 ± 0.16 [arxiv:1202.1834]
$BR_{c\tau\nu}\%$	2.63	2.42	2.19!?	-	2.41 ± 0.23 [J. Bringer et al.[PDG]]

[1]:[P. Gambino, C.Schwanda (2014)

- calculation of the moments
- Calculation of the QCD Radiative corrections to the next to leading terms in the Λ_{QCD}/m_b expansion
- Refinement of the methods to compute the form factors of the exclusive decays
- Discussion of possible non-standard effects