

RD51 WORKING GROUP 1/TASK 1 MEETING Large area MPGDS

A Large area GEM detector

Serge Duarte Pinto

Activities

- TOTEM Tı upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splicing Coverlay Test
- Manufacturing
- honeycomb Cathode & assembl High voltage
- Prototype The detector Gain

What we (can) do to advance with large area detectors

- This meeting, and next one end of April?
- GEM detector design & assembly training session, 16–20 February 2009
 - One day lectures by various experienced people
 - Two days hands-on LHCb GEM detector assembly training
 - Two days hands-on GDD-group GEM detector assembly
- One of the lectures will be a crash course readout board design by Rui. This will be equally relevant for non-GEM communities, and will therefore be EVO-cast
- A few groups are having a regular "large area GEM meeting" every few weeks. Something similar is going on for thickGEMs. How about micromegas...?

RD51 WORKING GROUP 1, TASK 1 MEETING Large area MPGDs

A Large are GEM detector

Serge Duarte Pinto

Activities

- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splicing Coverlay Test
- Manufacturing Framing & honeycomb Cathode & assembly High voltage
- Prototype The detector Gain

TOTEM T1 UPGRADE Based on large GEM chambers

A Large area GEM detector

Serge Duarte Pinto

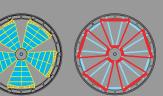
Activities

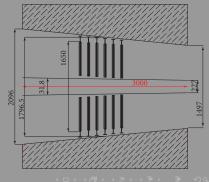
Totem

T**1 upgrade** Challenges

Single mask technique Manufacturing Performance

GEM splicii Coverlay Test


Manufacturing


honeycomb Cathode & assembly High voltage

Prototype The detector Gain

Ideas for upgrade of TOTEM T1

- Large triple GEM chambers (~ 2000 cm²)
- Discs of 2×5 chambers, back to back
- Overlap allows adjustable disc radius

TOTEM T1 UPGRADE

Technical challenges for such large active area

A Large area GEM detector

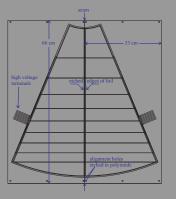
Serge Duarte Pinto

Activities

TOTEM T1 upgrade Challenges

Single masl technique Manufacturing Performance

GEM splicir Coverlay Test


Manufacturing Framing & honeycomb Cathode & assembly

High voltage

Prototype The detector Gain Technical hurdles for fabrication of large GEMS

Double mask technique introduces alignment errors at such dimensions

Base material is only 457 mm wide

TOTEM T1 UPGRADE

Technical challenges for such large active area

A Large are GEM detector

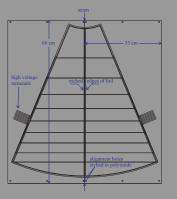
Serge Duarte Pinto

Activities

TOTEM T1 upgrade Challenges

Single masl technique Manufacturing Performance

GEM splici Coverlay Test


Manufacturing Framing & honeycomb Cathode & assembly

High voltage

Prototype The detector Gain Technical hurdles for fabrication of large GEMS

■ Double mask technique introduces alignment errors at such dimensions → *use single mask technique*

Base material is only 457 mm wide

TOTEM T1 UPGRADE

Technical challenges for such large active area

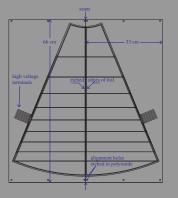
A Large area GEM detector

Serge Duarte Pinto

Activities

TOTEM Ti upgrade Challenges

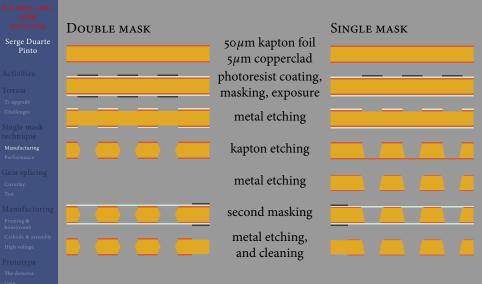
Single masl technique Manufacturing Performance


GEM splicii Coverlay Test

Manufacturing Framing & honeycomb Cathode & assembly

High voltage

Prototype The detector Gain Technical hurdles for fabrication of large GEMS


- Double mask technique introduces alignment errors at such dimensions → use single mask technique
- Base material is only 457 mm wide \longrightarrow splice foils together

GEM MANUFACTURING

Double mask vs. single mask technique

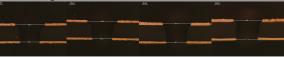
SINGLE MASK TECHNIQUE

Similar performance at lower cost

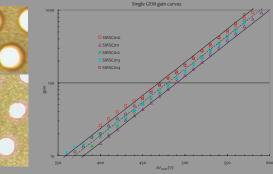
A Large area GEM detector

Serge Duarte Pinto

Activities


- TOTEM Ti upgrade Challenges
- Single mask technique Manufacturing **Performance**

GEM splicin; Coverlay Test


Manufacturing Framing & honeycomb Cathode & assembly High voltage

Prototype The detector Gain

First results were not encouraging — Sмт now performs similar to standard GEM.

SINGLE MASK TECHNIQUE

Rate capability and charging-up of tripleGEM


A Large are GEM detector

Serge Duarte Pinto

Activities

- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing
- GEM splicing Coverlay
- Test
- Manufacturing
- Framing & honeycomb Cathode & assemb High voltage
- Prototype The detector Gain

Rate capability with copper X-ray

- Multiply by 320 for rate of primaries
- Charging up is stronger but very fast (seconds)
- Needs to be studied, and can still be improved by optimizing hole profile on new foils

SPLICING GEMS *Glue foils with pyralux coverlay*

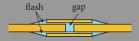
glue

A Large are GEM detector

Serge Duarte Pinto

Activities

- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing
- Performance
- GEM splicing
- Test
- Manufacturing Framing & honeycomb Cathode & assembly High voltage

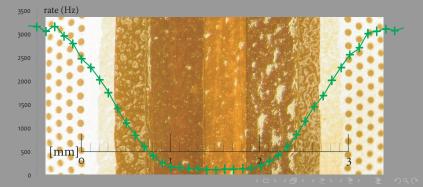

kapton

Prototype The detector Gain

Coverlay to glue GEMS

Seam is flat, regular, mechanically and dielectrically strong, and only 2 mm wide.

SPLICING GEMS *Test performance near the seam*


A Large area GEM detector

Serge Duarte Pinto

Activities

- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splicing Coverlay Test
- Manufacturing Framing & honeycomb Cathode & assembly High voltage
- Prototype The detector Gain

- X-ray with Ø0.5 mm collimator
- Rate scan over the seam
 - Behaves normally until at the seam
 - Performance rest of GEM surface unaffected

MANUFACTURING From the design to a prototype

A Large area GEM detector

Serge Duarte Pinto

Activities

- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splicing Coverlay Test

Manufacturing

Framing & honeycomb Cathode & assembl High voltage

Prototype The detector Gain

Stretching and framing the spliced single mask GEM foils

Making the honeycomb base plane and top cover

MANUFACTURING From the design to a prototype

A Large area GEM detector

Serge Duarte Pinto

Activities

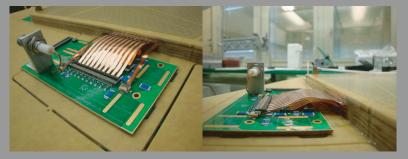
- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splicing Coverlay Test
- Manufacturing Framing & honeycomb Cathode & assembly

Prototype The detector Gain

Gluing the cathode to the honeycomb frame

Final assembly of all frames

MANUFACTURING <u>High vol</u>tage distribution

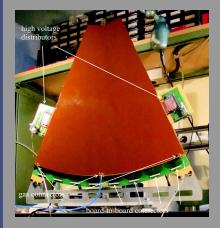

A Large area GEM detector

Serge Duarte Pinto

Activities

- TOTEM Ti upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splicing Coverlay Test
- Manufacturing Framing & honeycomb Cathode & assembly High voltage
- Prototype The detector Gain

Compact high voltage divider board



- Based on only SMD components
- Using ZIF sockets to connect to GEM terminals
- Traces that lead to GEM sectors are embedded in frame
- Easy to make, and to replace or debug



THE PROTOTYPE *The final detector and its performance*

- A Large area GEM detector
- Serge Duarte Pinto
- Activities
- TOTEM Tı upgrade Challenges
- Single masl technique Manufacturing Performance
- GEM splicing Coverlay Test
- Framing & honeycomb Cathode & assembl High voltage
- Prototype The detector Gain

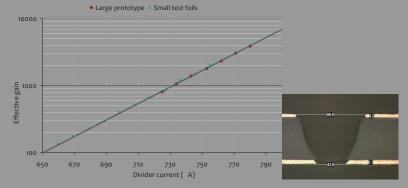
- Gas tightness & high voltage stability Ok
- Too late for testbeam by lack of electronics
- □ $\frac{\sigma_E}{E}$ = 9.5% measured with Cu X-ray (8.9 keV)

THE PROTOTYPE *The final detector and its performance*

A Large area GEM detector

Serge Duarte Pinto

Activities


- TOTEM T1 upgrade Challenges
- Single masl technique Manufacturing Performance

GEM splicing Coverlay Test

Manufacturing

- honeycomb Cathode & assembly High voltage
- Prototype The detector Gain

Gain consistent with 10 \times 10 cm test foils

- Lower gain at equal voltage than standard (double mask)
 GEM, as expected from wide hole diameter
- Development of optimal hole profile still continues

PERSPECTIVES For large area GEMS

A Large area GEM detector

Serge Duarte Pinto

Activities

- TOTEM Tı upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splici Coverlay Test
- Manufacturing Framing & honeycomb Cathode & assembly
- Prototype The detector Gain

- Single mask technique proved viable and cheap alternative
 Splicing method goes beyond limits of base material
- These techniques open the way for large area GEMS

Perspectives

Conclusions

- Connect to fast electronics (VFAT or GP5/7) to study efficiency
 Discharge studies
- Test gain homogeneity
- □ Charging-up studies of single-, double- and tripleGEM
- Pursue optimization of SMT (steeper holes, smaller rim)
- already many foils waiting to be tested ...

Embedded resistors

Screen-printed PTF resistors to be glued in the frame


A Large are GEM detector


Serge Duarte Pinto

Activities

- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing Performance
- GEM splicing Coverlay Test
- Manufacturing Framing & honeycomb Cathode & assembly High voltage
- Prototype The detector Gain

- A half Т1 GEM foil requires 10 sectors
- Makes 60 sectors per chamber, complicates HV circuitry
- Embedding resistors in frame would solve the issue
- Tolerance requirements for resistors extremely low, but still waiting for suitable high-resistivity paste

Shielding of GEM chamber

Using decoupling capacitors

A Large are GEM detector

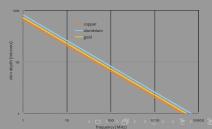
Serge Duarte Pinto

Activities

- TOTEM T1 upgrade Challenges
- Single mask technique Manufacturing Performance

GEM splicing

Coverla Test


Manufacturing

Framing & honeycomb Cathode & asseml High voltage

Prototype The detector Gain

Use bottom electrodes as shield by applying decoupling capacitors

- Simulations indicate negligible effect on discharges
- HV distribution boards of prototype have features to implement these capacitors
 - must be tested with fast electronics to verify suppression of noise

