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Plan of the Talk

a) Two Particle Correlation function(How to construct it?)
b) Method of Particle Identification

Once we know how to construct correlation function with Identified particles--
c) Motivation(How to use that correlation function to study physics phenomenon..)

d) Results
e) Outlook

f) Summary



Two-Particle Correlations

* Correlation between a trigger and an associated
particle in certain p; intervals (pr ,s0c < P trig)
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So, Finally we get the proper correlation function:

20<p <4.0-100<p Tassoe < 2.00 - 0-20%

T.trig

But in this analysis we have to construct the correlation function with identified trigger
Particles.

So , we have to identify the Trigger particles(Trigger Pt region 2.0-4.0 GeV/()...



A Large lon Collider Experiment

Tracking,
PID (dE/dx)

A Low p; tracking
PID + Vertexing




Particle Identification In ALICE
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Figure 2: Left: Specific energy loss dE/dz in the
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TPC together with Bethe-Bloch curves for

the different particle species (red curves). Right: Velocity 8 = L/(ct), where L is the flight
path of the track, versus particle momentum measured with the TPC.

= |n this analysis both TPC & TOF are used for identification of particles

(2.0<=Pt<=4.0 Gev/c)




Particle Identification (2)

e Difference between measured and expected
signal normalized to resolution

e Statistical method for spectra
* Track-by-track identification for correlation

analysis o 19 IR R I e
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— Combined for TPC and TOF ) : - "1,5"<ﬁs:_'1_55(§ev,§)
v (VB ) = (dE 1dx)y " 5 - St
o= a - 27/06/2013
O7pc £ -
2 C
+ tmeas - texp ::
Oror
2 2 2 ; e
o,PID o, TPC o,TOF S 0 : 10 T 20 25 20
no pions, TOF

* No variable>the number of standard deviations of the particular track’s dE/dx value from
the Bethe—Bloch expectation for a charged pion(in case of TPC, similar case for TOF).



O Particles are identified with N pp < 3 circular cut:

B

p-Pb, |5y, =5.02 TeV
1.5<p<1.6(GeV/ic)
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In this Analysis:

> Trigger Pt range—> 2.0-4.0 Gev/c
> Associated Pt range—>1.0-4.0 Gev/c

NSigmaPID Circular cut: 3

. 2 AR 2
Where:  Ng pip = Ng 1pc +Ng TOF

But neither tracking reconstruction nor PID method is 100% efficient. So efficiency and purity
factors to be determined and applied for correction.. 9



MC Study for Efficiency and Misidentification Rate

Each trigger and each associated particle is weighted with a correction factor that ac-
counts for detector acceptance, reconstruction efficiency and contamination by secondary
particles. For the identified associated particles this correction factor also includes the TOF
matching efficiency and the efficiency to identify the particle. These corrections are applied
as a function of 7, pr and z,tx. These correction factors are extracted from the MC sample

described in 2:

MC reconstructed tracks(IDyc = IDgetector )
w= - - . (1)
MC generated primaries

Efficiency Map
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Misldentification Rate
2.0 GeV/c < p,<5.0 GeV/c

Reco Others 0.640095

Reco Proton

Reco Kaon

Reco Pion

vd gd ¢d 1d Xya ZqETOHTDW

Truth Pion Truth Kaon Truth Proton Truth Others

The misidentification rate is corrected at the 2D correlation level....

11
Now, we have tools to do Identified Trigger Particle Correlation. But why should we do that??



ALICE, PLB708 (2012) 249

3<p! <4 GeV/c Pb-Pb 2.76 TeV
T
2< p; < 2.5 GeV/c

C(Aq’! "\n)

The Near-Side Ridge

(d) CMS N > 110, 1.OGeVIc<pT<3.OGeV/c

Observed in high-multiplicity pp
collisions

Well known feature from Pb-Pb
collisions (= collective flow)
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Somehow expected in p-Pb, still
surprising, in particular the
amplitude

0-10%

CMS, JHEP09(2010)091

CMS, PLB718 (2013) 795

[HEY
N



LONG RANGE ANGULAR CORRELATION—INITIAL STAGE EFFECT

» Correlation function:
- Partons from the same tube are correlated
- Correlations between tubes are negligible

detection

1/Qs.

A
Figure 4: Glasma flux tubes. The transverse size of the flux tubes is of order k&

freeze out

latest correlation

arXiv:0804.3858v1

Figure 1: The red and green cones are the location of the events in causal
relationship with the particles A and B respectively. Their intersection is the
location in space-time of the events that may correlate the particles A and B.
@ If there is no medium formation due to the collision , the correlation between two correlated
particles separated by large pseudorapidity difference must be originated at an earlier time 2>
causality argument.
(carrying some signature of initial stage effect) 13
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ALICE RESULT(p-Pb)
€ What about p-Pb??......

‘arXiv:1212.2001v1 [nucl-ex]
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ALICE RESULT
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> Collectivity in p-Pb?? May be..,Let’s compare different results from

p-Pb and Pb-Pb 15



ALICE RESULT
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» shows similar behavior as observed in Pb-Pb collisions
— significant increase at intermediate p_ with increasing VOA multiplicity
— corresponding significant depletion in the low-p_region
— stronger enhancement than K/r

16

> Pb-Pb generally understood in terms of collective flow and/or recombination




ALICE RESULT
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Figure 3. Transverse momentum spectra of different particle species measured in high multiplicity p — Pb
collisions, data are compared with models (left). Baryon to meson ratios measured in p—Pb and Pb—Pb collisions,
A/KS vs. pr are presented for two extreme multiplicity (centrality) classes (right).

Same picture in the Strange sector......
17



Recombination As A Model of Hadronization......

2 Recombination 3 p, = | GeV/c partons —p, = 3 GeV/c baryon
8 i 2 P, = 1.5 GeV/c partons =P = 3 GeV/c meson
E - Fragmentation 1 p, > 3 GeV/c parton —p, = 3 GeV/c baryon /)]
ol 1 pp >3 GeVle parton — p, =3 GeV/c meson 8
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arXiv:1406.5733v1

Figure 1.20: Cartoon demonstrating recombination.
FIG. 5: (Color online) Thermal distribution 7 (p;) is depicted by the dashed (blue) line for 7' = 0.31

GeV. Shower parton distribution S* is shown in solid (red) line with low-p; cutoff.

€ Why we bother about Recombination model? - The observed inclusive baryon(over meson)
enhancement in Pb-Pb in the Pt region (~2 to ~5 GeV/C) is well explained by this

Recombination model.

18



Recombination As A Model of QGP Hadronization......
lo; (a) =° L (c) protons

107

107

arXiv:0807.4939v1
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Figure 4: Hadron p7r-spectra at midrapidity from 200 GeV central Au+Au
collisions. The curves show the recombination and fragmentation components of
the spectra obtained in the FMNB formalism along with the total which compares

well with the data. 19



Radial Flow: An Alternative Prescription
*Partial validity of NCQ at LHC has triggered debate on RECOMBATION being a model of
hadronization.

*Recent ALICE publications have shown a simillar scanario of enhanced p/pi ratio may be
achieved from larger RADIAL FLOW(~0.67 at 0-5% central event).

*Increase in particle ratio is “bulit-in” in hydro-inspired model, a consequence of mass
ordering induced by radial flow.

=3 1.2_"""I"1"""15'_."|"""1"1'"q
a - == Krakow, 0-5% ;':"’-g (a)
| I HKM, 0-5%  — {7 -
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0.2
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Data is found to have better aggrement with hydro-inspired Krakow model, yet
not enoughTo RULE OUT quark COALESCNCE (http://arxiv.org/pdf/1303.0737v2.pdf



It seems that there may be some collectivity even in p-Pb.....

Baryon to meson enhancement in the intermediate Pt and also the mass ordering of
V2 in this intermediate Pt region can be explained by(at least qualitatively)-

a) Radial Flow = (Indicating collectivity in the system produced in p-Pb collision)

b) Recombination of Thermal quarks(mainly) = ((Indicating collectivity in the system
Produced in p-Pb collision)

BUT...

21



ALICE RESULT
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No Jet Quenching in p-Pb(but significant Jet Quenching in Pb-Pb)!!!
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€ At similar multiplicity, the invariant radii extracted in p—Pb collisions are found to be 5-15%
larger than those in pp, while those in Pb—Pb are 35-55% larger than those in p—Pb. These
measurements disfavor models which incorporate substantially stronger collective expansion
in p—Pb as compared to pp collisions at similar multiplicity.

What is going on in p-Pb??..... 23



Correlation with Identified Triggers can add something....

Trigger Particles- Particles in the intermediate Pt region(2.0< p T < 4.0 GeV/()
Consists of> Hard(origin: Fragmentation) + SOFT(origin: Bulk) particles

U Two particle correlation with Hard Triggers only:

20< Prie < 4.0-1.00 < P, < 4.00 - PionTrig - 60-100
strig B

ssssssss

= Near Side Jet Peak(Fragmentation)
= No Ridge/Bulk
= This is the case in Lowest multiplicity event class
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 Two Particle Correlation with Soft Triggers only:
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High multiplicity events Low multiplicity events Double “Ridge” 24
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Assumption:Soft Triggers do not have any associated particles in the Jet Peak

' Observable: Area under the Near side Jet Peak in all multiplicity classes - the Yield
associated with Hard Triggers only.

 Lowest Multiplicity event class(No Ridge / Soft physics):

1 (d’N

Hard assoc Area Under the Jet Peak

Triggers N | d A r] d AQQ Yield associated with Hard Triggers
only rig ?

A Higher Multiplicity event class(Ridge is present):

1 Jd*N

assoc
Harc{ + Soft , N
Triggers

Area Under the Jet Peak

d A n d A @ Yield associated with Hard Triggers

rig

> Role of Soft Triggers-> creating dilution in per trigger yield....... 25



Lowest Multiplicity Highest Multiplicity

Proportion of Soft Triggers will increase.

Dilution will increase

Rate of dilution=> Rate of increase in soft triggers

Rate of increase in soft triggers has a species dependency.

Trigger Pt range(2-4 GeV/C)-> Baryon to Meson enhancement is there

» More dilution is expected in Proton Triggered case...... 26
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Proton/Pion Triggered Near Side Yield (Bulk Subtracted)
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SUMMARY:

Trigger Dilution can serve as a useful tool to probe the
presence of soft physics in small collision systems.....

Thank You



Is it possible to add some more constraint on the ongoing debate (collectivity in p-Pb??) with
This study “Two particle Correlation Function with Identified Triggers”?

We are determining “Bulk Subtracted Per Trigger Jet Like Yield at Near Side”

BulkePosk a) Correlation ) )
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ALICE RESULT(p-Pb)

€ What about p-Pb??......
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Is it flow?...
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