Upsilon production in hadronic collisions

Bottomonia(Ys) in ALICE Run-I (PAG summary) Proton-Proton(pp) results (EPJC 74 (2014), 2974 Heavy-ion(Pb-Pb) results (PLB 738 (2014), 361 Proton-Lead(p-Pb) results (PLB 740 (2015), 105

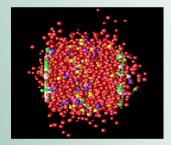
The **first PAG summary at ALICE PHYSICS WEEK** (April, **2012**) Frascati : <u>https://agenda.infn.it/contributionDisplay.py?contribId=65&sessionId=1&confId=4447</u>

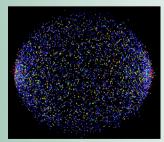
ALICE-INDIA MEETING 2016 SINP

Debasish Das (SINP)

Heavy Quarks

Heavy quarks carry information of early stage of collisions:
Charm(c) and bottom(b) quarks are massive.


- Formation takes place only early in the collision.
 - Sensitivity to initial gluon density and gluon distribution
- Suppression or enhancement pattern of heavy quarkonium production reveal important and critical features of the medium


Cold Nuclear Matter effect (CNM): Different scaling properties in central and **forward rapidity** region CGC; Gluon shadowing, etc

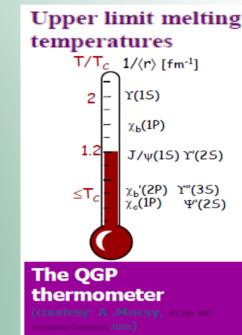
Proposed Signature of De-confinement :
 Color screening of static potential between heavy quarks:
 J/ψ suppression: Matsui and Satz, *Phys. Lett. B* 178 (1986) 416
 Suppression determined by T_C and binding energy

De-confinement \rightarrow **Color screening** \rightarrow **heavy quarkonia states "dissolved"**

Debasish Das (SINP)

Quarkonia

Charmonia: J/ψ , Ψ' , χ_c **Bottomonia**: $\Upsilon(1S)$, $\Upsilon'(2S)$, $\Upsilon''(3S)$


Lattice QCD: Evaluation of spectral functions \Rightarrow T_{melting}

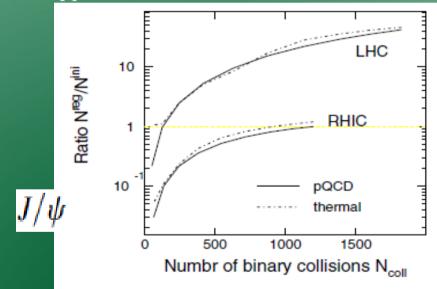
Models based on potential with largest possible binding \Rightarrow most bound states melt by $1.3T_c$ Upsilon (1S) survives until $2T_c$

Lattice results : Consistent with quarkonium melting Suppression pattern \Rightarrow thermometer of QCD matter

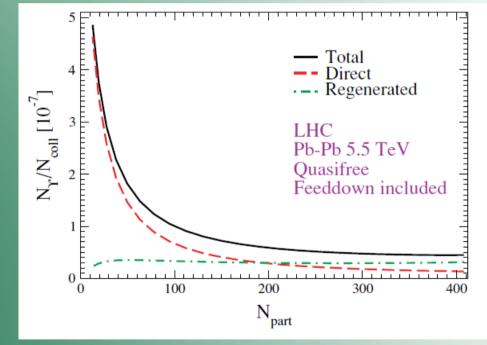
 $\geq 2E_{bin}(T)$ Υ' Υ State ψ' J/ψ χ_c χ_b $\leq T_c$ $T_{\rm dis}$ $\leq T_c$ $1.2T_c$ $1.2T_c$ $1.3T_c$ $2T_c$ Increasing binding energy

PRL 99, 211602

Quantifying suppression requires: Baseline p+p measurement


Measurement of Cold Nuclear Matter effects: p+A collisions

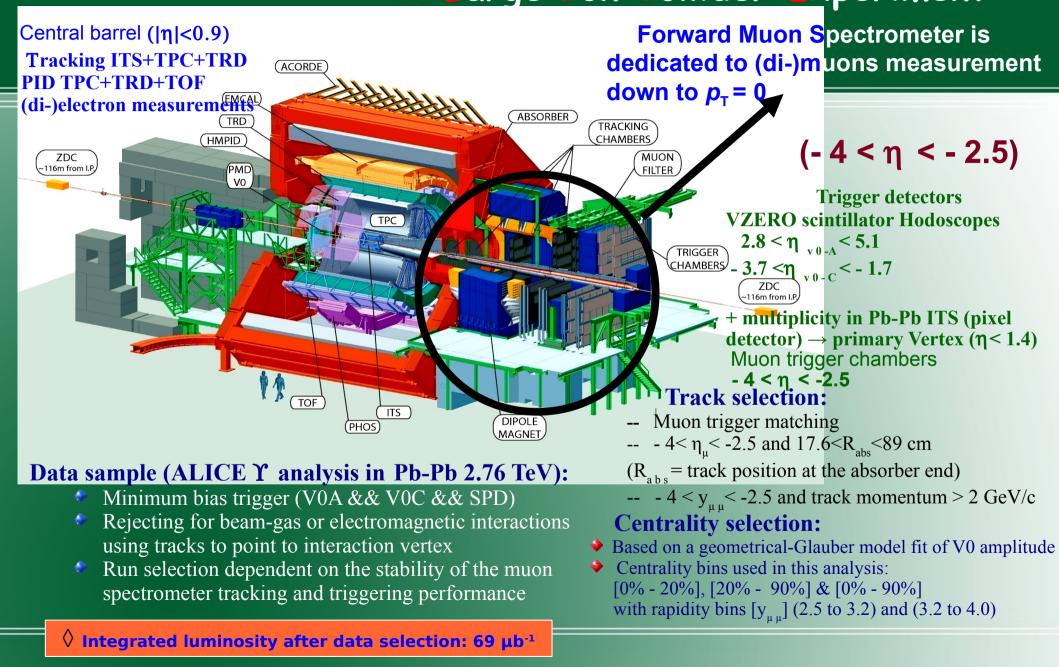
Debasish Das (SINP)


Bottomonia vs Charmonia

Bottomonia :

- Regeneration effects are much weaker.
- No feed-down from open heavy-flavors but only from higher-mass bottomonia.
- Suppression effects should be more evident.

Regeneration @ LHC: **Dominant** mechanism **More** charmonia created **Suppression picture : complicated** PRL 97, 232301 for charmonia !

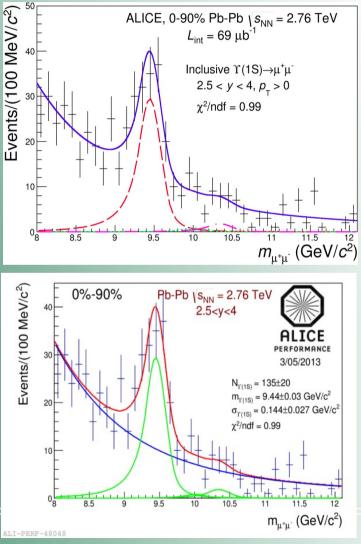


Suppression picture : holds for Υ PRC 73, 064906 \rightarrow Despite regeneration @ LHC

Bottomonia powerful probe for QGP

Debasish Das (SINP)

The ALICE experiment (LHC-CERN) <u>A Large Ion Collider Experiment</u>


Υ(1S) analysis in Pb-Pb 2.76 TeV

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV

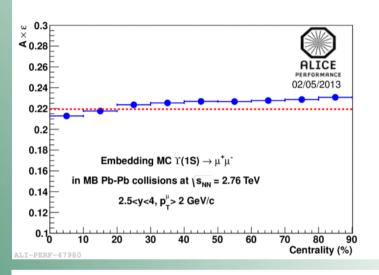
- --The Υ signal is extracted by means of a fit to the opposite-sign dimuon invariant mass spectrum
- --The Υ line-shapes are described by extended crystal ball with the tail parameters fixed with Monte Carlo results
- --The underlying background is fitted using a sum of two exponentials or a sum of two power-law functions
- --The amplitude, position and width of $\Upsilon(1S)$ are kept as free parameters
- --Parameters of the double exponential and amplitude of Υ (2S) and Υ (3S)kept free
- --Width of 2S and 3S constrained to those of 1S as per PDG ratio
- --The mass differences between states were fixed from PDG values

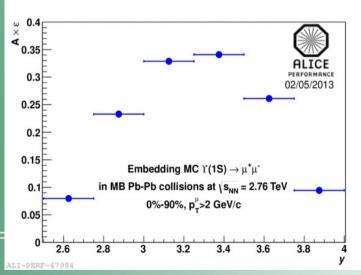
https://aliceinfo.cern.ch/ArtSubmission/node/193

6

Debasish Das (SINP)

$\Upsilon(1S)$: Acceptance x Efficiency


PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV


-- Acc × Eff correction plotted as a function of **centrality** and **rapidity**

-- Small decreasing of the reconstruction efficiency with increasing centrality $\sim 7\%$ due to increasing detector occupancy

-- Acc x eff peaked at mid-rapidity and decreasing towards the edge of the acceptance

--Systematic uncertainty on $\Upsilon(1S)$ cross section includes conributions from tracking (~10%) and trigger (~2%) efficiencies, matching between tracking and trigger detectors (1%), signal extraction (~5-10%) and Monte Carlo inputs to acceptance calculation (~4-7%)

Debasish Das (SINP)

Inclusive $\Upsilon(1S)$: Nuclear Modification factor

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV

$\Upsilon(1S)$ yield per unit rapidity

$$\frac{\mathrm{d}Y_{\Upsilon(1\mathrm{S})}}{\mathrm{d}y} = \frac{N_{\Upsilon(1\mathrm{S})}}{BR \cdot N_{\mathrm{MB}} \cdot A \times \varepsilon \cdot \Delta y}$$

$\Upsilon(1S)$ Nuclear Modification factor

 $\begin{array}{l} 0\% - 90\% \\ 2.5 < y < 4.0 \ p_T > 0 \\ (R_{AA}^{T(1S)} \pm \text{stat.} \quad \pm \text{syst.}) \\ 0.30 \quad \pm 0.05 \quad \pm 0.04 \end{array}$

 $< T_{AA} > =$ the average nuclear overlap function

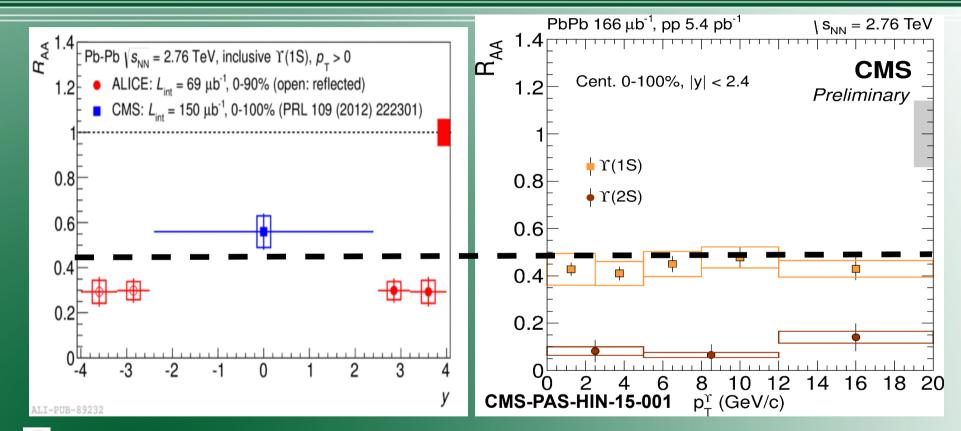
= the pp reference y-differential cross-section

The inclusive Y(1S) cross-section per unit of rapidity in pp collisions at 2.76 TeV is obtained from the rapidity interpolation of LHCb data [R Aaij et. al., LHCb Collab., arXiv:1402.2359, EPJC 74, 2835(2014)]

 $d\sigma_{pp}$

dy

Debasish Das (SINP)


06/02/2016

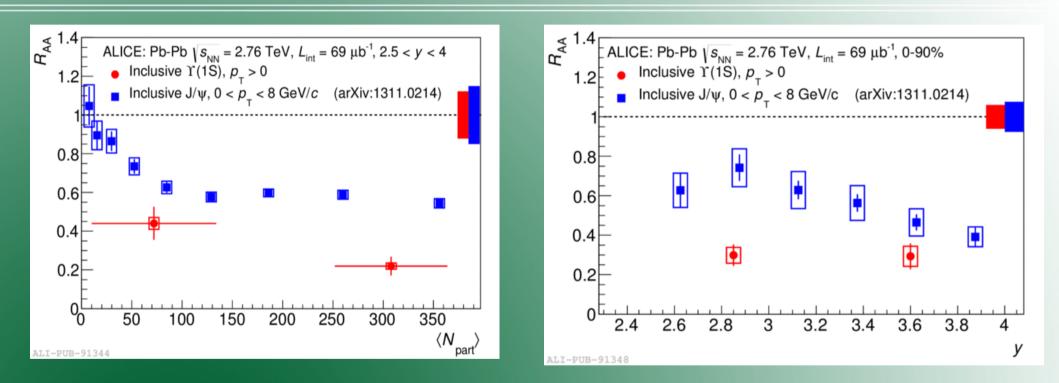
8

 R_{AA}

Comparisons of $\Upsilon(1S) R_{AA}$: ALICE and CMS

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV

 Υ (1S) more suppressed in recent measurements than what was before in (CMS :PRL 109 (2012) 222301) old: R, (Y(1S)) = 0.56 ± 0.08 ± 0.07

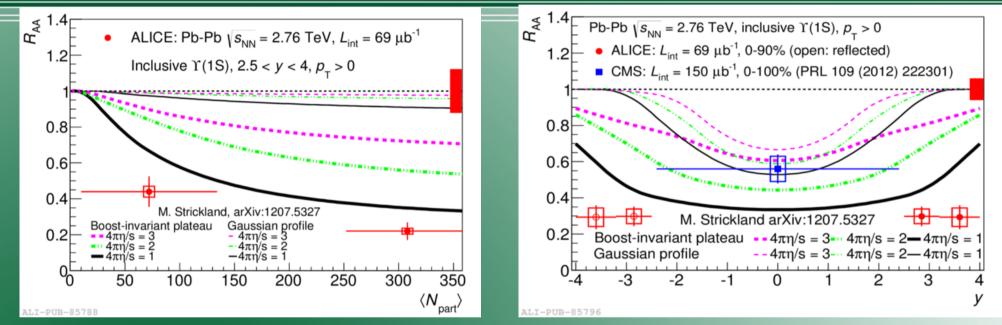

new:
$$R_{\perp}$$
 (Y(1S)) = 0.425 ± 0.029 ± 0.070

The results now compare better with ALICE measurements

Debasish Das (SINP)

Comparisons of $\Upsilon(1S)$ and J/ ψ R _ A

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV


Inclusive $\Upsilon(1S)$ showing more suppression in rapidity and centrality than J/ ψ

Not a straight forward interpretation due to important contributions of regeneration of J/ψ and feed-down from higher mass states for Υ

Debasish Das (SINP)

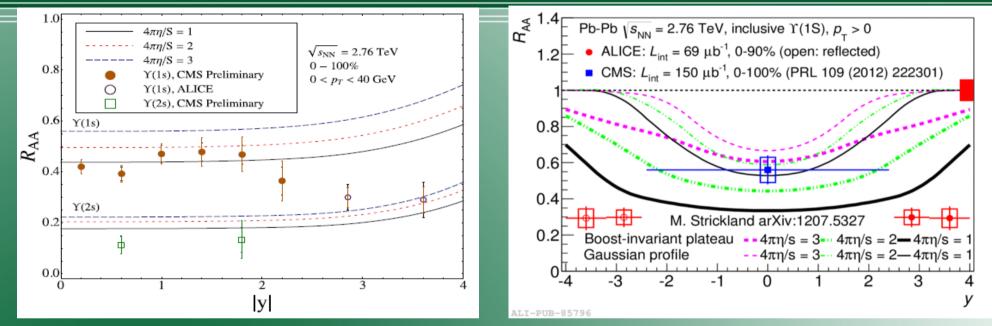
Comparisons of $\Upsilon(1S) R_{AA}$ with Dynamical model

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV

Thermal suppression of bottomonium states :

- \square Utilizes a potential model to determine the impact of QGP phase on Υ suppression
- States and decay widths utilizing this potential is integrated over
- the space-time evolution of QGP using anisotropic hydro formalism
- Two temperature rapidity profiles: Boost invariant or Gaussian
- Three tested shear viscosities
- Feed down from higher mass states included
- No Cold Nuclear Matter(CNM) effects included
- Does not also include recombination effects

ALICE Y(1S) R_{AA} is underestimated by the dynamical model M. Strickland, arXiv:1207.5327v3

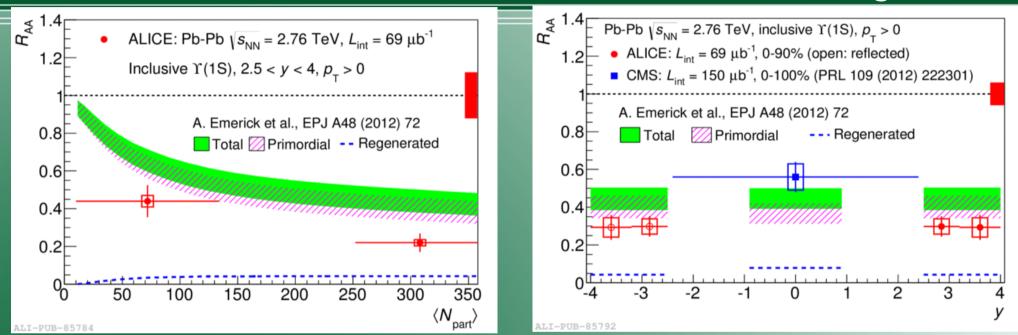

11

Debasish Das (SINP)

Comparisons of $\Upsilon(1S) R_{AA}$ with Dynamical model

B. Krouppa, R. Ryblewski & M. Strickland ArXiv:1507.03951, Phys. Rev. C 92, 061901(R)

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV



Thermal suppression of bottomonium states (new calculations):

- Compared to earlier predictions the model shows milder trend and closer to ALICE Υ data
- Change in centrality averaging where previously a flat probability distribution was used
- Three tested shear viscosities
- Feed down from higher mass states included
- No Cold Nuclear Matter(CNM) effects included
- Does not also include recombination effects

Comparisons of $\Upsilon(1S) R_{AA}$ with Transport model (I)

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV

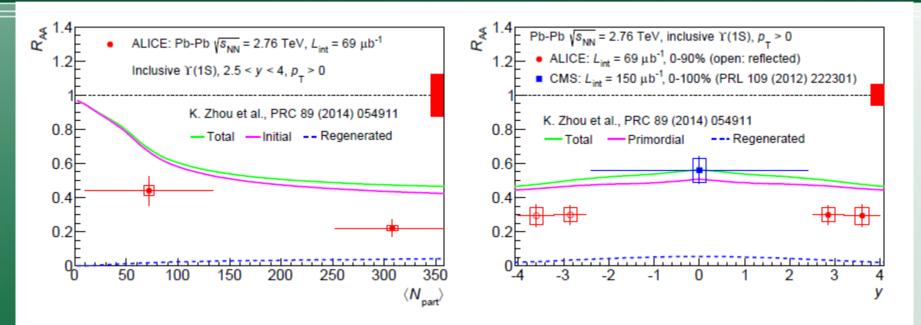
Transport model [A. Emerick et al., EPJA48 (2012)72]

Suppression of primordial resonances by the QGP

Suppression and regeneration mechanism implemented using a rate equation

Spatio temporal evolution tuned according to recent LHC results

Small regeneration component included
 Feed down from higher mass states included


ALICE $\Upsilon(1S)$ R_{AA} is underestimated by this transport model

 \sim CNM included via an "effective" σ_{abs} with values at 0 and 2 mb

Debasish Das (SINP)

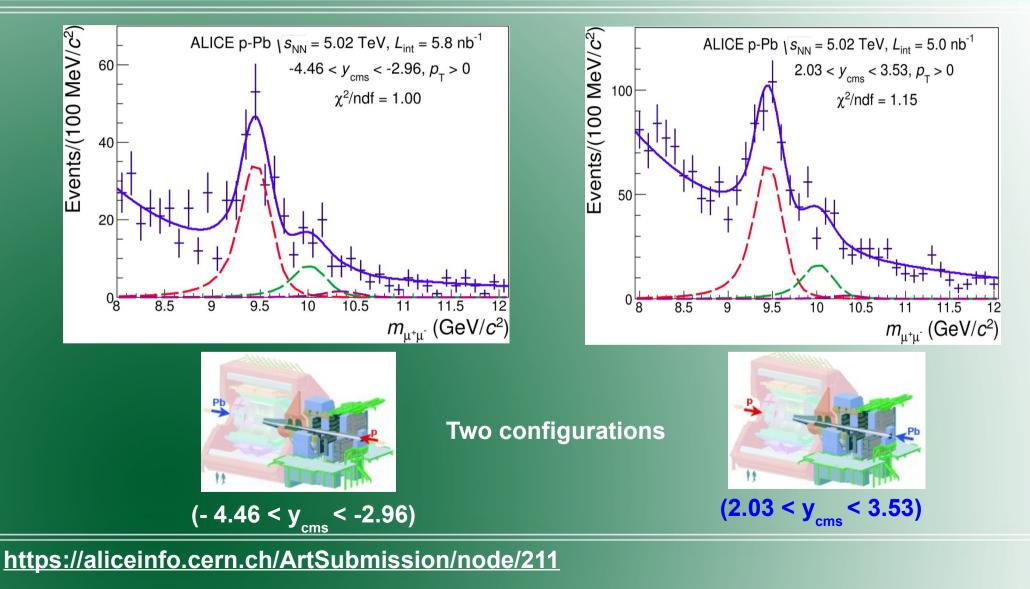
Comparisons of $\Upsilon(1S) R_{AA}$ with Transport model (II)

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV

Transport model [K.Zhou et. al. ArXiv: 1401.5845,

PRC89 (2014) 054911 and private communication]

- Similar approach as before but also using potential model results quantitatively
- Small regeneration component included
- Feed down from higher mass states included
- CNM included using the EKS98 shadowing parameterization


Model reproduces CMS mid-rapidity point but underestimates ALICE results at forward rapidity

Different rapidity behaviour ---What role do CNM effects play?

Debasish Das (SINP)

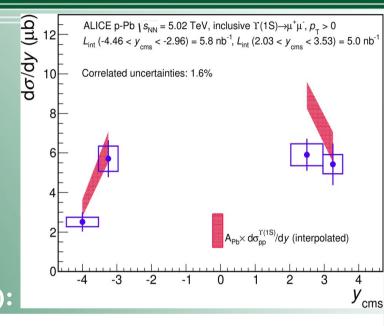
$\Upsilon(1S), \Upsilon(2S)$ in p-Pb & Pb-p collisions @ 5.02 TeV

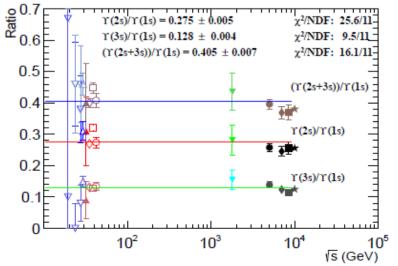
PLB 740 (2015) 105 p-Pb @ 5.02 TeV

15

Debasish Das (SINP)

Production cross-sections and ratios


PLB 740 (2015) 105 p-Pb @ 5.02 TeV


Rapidity integrated cross-sections:

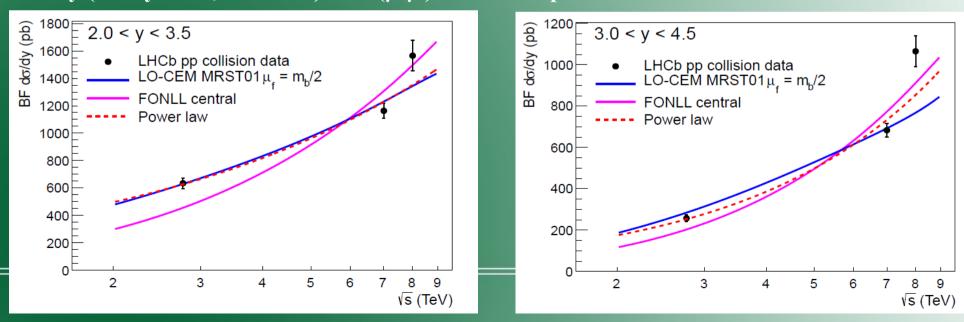
 $σ^{\Upsilon(1S)} (-4.46 < y_{cms} < -2.96) = 5.57 \pm 0.72 \text{ (stat)} \pm 0.60 \text{ (syst)} \mu b$ $σ^{\Upsilon(1S)} (2.03 < y_{cms} < 3.53) = 8.45 \pm 0.94 \text{ (stat)} \pm 0.77 \text{ (syst)} \mu b$ $σ^{\Upsilon(2S)} (-4.46 < y_{cms} < -2.96) = 1.85 \pm 0.61 \text{ (stat)} \pm 0.32 \text{ (syst)} \mu b$ $σ^{\Upsilon(2S)} (2.03 < y_{cms} < 3.53) = 2.97 \pm 0.82 \text{ (stat)} \pm 0.50 \text{ (syst)} \mu b$ Rapidity integrated cross-section ratios of Υ(2S)/ Υ(1S): $(-4.46 < y_{cms} < -2.96) : 0.26 \pm 0.09 \text{ (stat)} \pm 0.04 \text{ (syst)}$

 $(2.03 < y_{ms} < 3.53): 0.27 \pm 0.08(stat) \pm 0.04(syst)$

experiment	system	energy (GeV)	rapidity	$\Upsilon(2S)/\Upsilon(1S)$	$\Upsilon(3S)/\Upsilon(1S)$	$\Upsilon(2S+3S)/\Upsilon(1S)$	ref.
$CFS \nabla$	p + p	19.4	$< y >_{ac} = 0.40$	0.670 ± 0.940	0.100 ± 0.600	0.770 ± 1.115	[26]
CFS \bigtriangledown	p + p	23.7	$< y >_{ac} = 0.21$	0.460 ± 0.130	0.000 ± 0.080		[26]
CFS \bigtriangledown	p + p	27.4	$< y >_{ac} = 0.03$	0.380 ± 0.110	0.080 ± 0.060	0.460 ± 0.122	[26]
CFS \triangle	$p + P_t$	27.4	y = 0	0.310 ± 0.030	0.150 ± 0.020	0.460 ± 0.034	[27]
E605 🔺	$p + B_e$	38.8	y = 0	0.310 ± 0.110	0.090 ± 0.060	0.400 ± 0.125	[28]
E605 🔷	$p + C_u$	38.8	$-0.15 < x_F < 0.25 \ (-0.28 < y < 0.46)$	0.270 ± 0.011	0.131 ± 0.008	0.400 ± 0.014	[29]
E886	p+d	38.8	$0 < x_F < 0.6 \ (0.00 < y < 0.98)$	0.321 ± 0.012	0.127 ± 0.009	0.448 ± 0.016	[30]
E886 🔾	p + p	38.8	$0 < x_F < 0.6 \ (0.00 < y < 0.98)$	0.274 ± 0.017			[30]
CDF 🔻	$p + \bar{p}$	1800	y < 0.4	0.281 ± 0.048	0.155 ± 0.032	0.436 ± 0.058	[31]
$CMS \bullet$	p + p	7000	y < 2.0	0.258 ± 0.012	0.138 ± 0.010	0.396 ± 0.015	[32]
LHCb \blacklozenge	p + p	7000	2.0 < y < 4.0	0.245 ± 0.015	0.124 ± 0.008	0.369 ± 0.020	[33]
ATLAS	p + p	7000	y < 2.25	0.256 ± 0.019	0.115 ± 0.010	0.371 ± 0.024	[34]
LHCb ★	p + p	8000	2.0 < y < 4.5	0.256 ± 0.005	0.125 ± 0.003	0.381 ± 0.006	[35]

06/02/2016 W.Zha et. al., ArXiv:1308.4720

W.Zha et. al., ArXiv:1308.4720


Debasish Das (SINP)

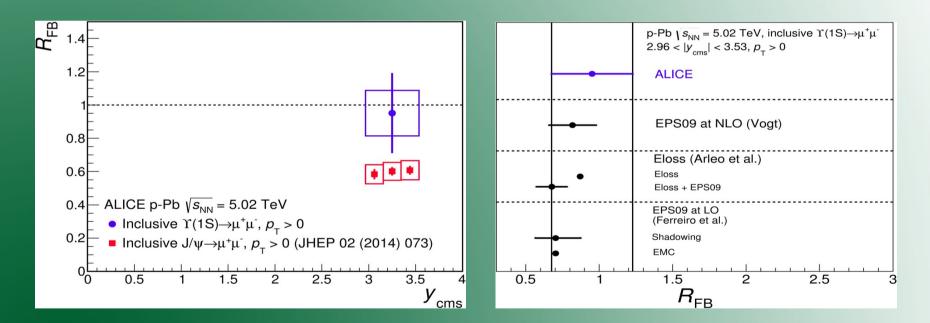
16

p-p cross-sections @ 5.02 TeV

ALICE-PUBLIC-2014-002 p-Pb @ 5.02 TeV

- No experimental data exist for pp at 5.02 TeV
- Using energy interpolation at forward rapidity
 - --LHCb measurements of $\Upsilon(1S)$ at 2.76, 7 and 8 TeV
 - --Several functional forms used
 - --Of which some are also based on pQCD FONLL calculations
- Thus interpolated cross-sections used are : $d\sigma^{\Upsilon(1S)}/dy \ (2.0 < y < 3.5, 5.02 \text{ TeV}) \times BF(\mu^+\mu^-) = 967 \pm 76 \text{ pb}$ $d\sigma^{\Upsilon(1S)}/dy \ (3.0 < y < 4.5, 5.02 \text{ TeV}) \times BF(\mu^+\mu^-) = 513 \pm 58 \text{ pb}$

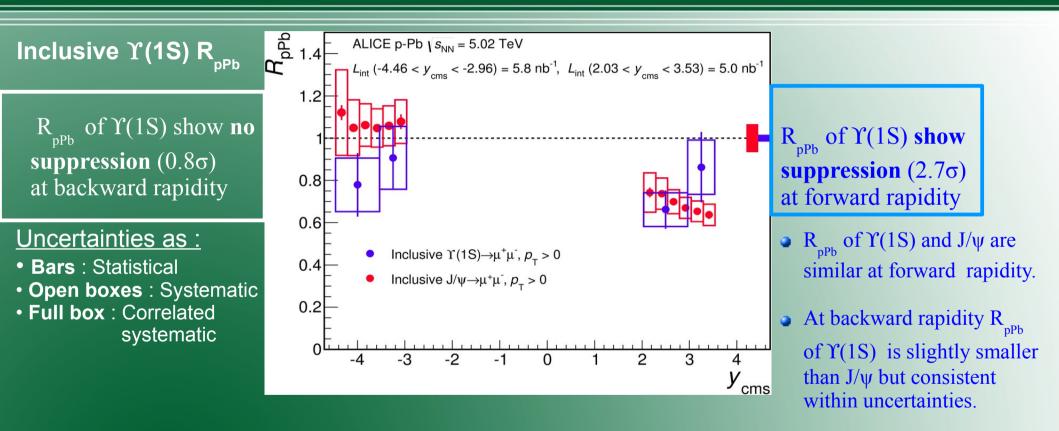
Debasish Das (SINP)


Forward to Backward ratio (R_{FR})

PLB 740 (2015) 105 p-Pb @ 5.02 TeV

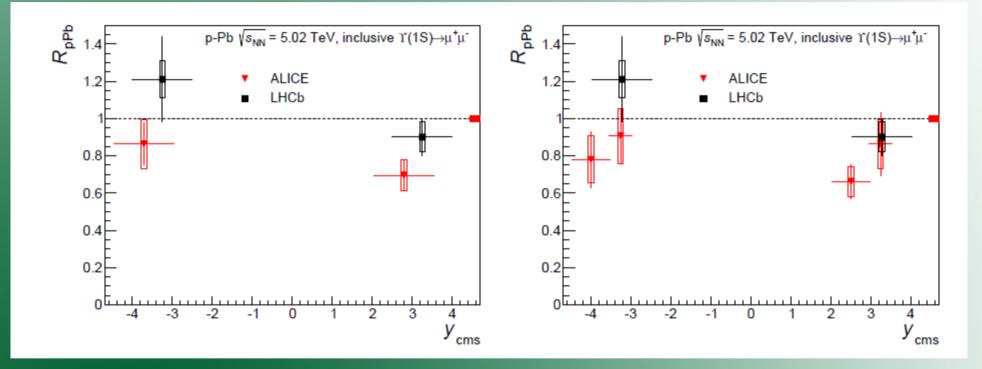
 $R_{_{FB}}$ calculated from production cross-section ratio of forward and backward rapidities

-- Hence it does not depend on $\sigma_{nn}^{\Upsilon(1S)}$


- But needs to be restricted in the common rapidity region of 2.96 < |y_m_| < 3.53

All models describe the data within the present uncertainties of the measurement.

Υ(1S) nuclear modification factor in p-Pb

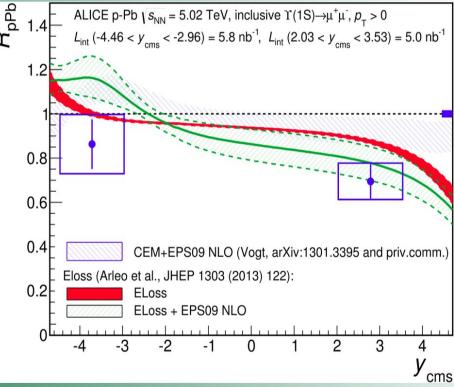

PLB 740 (2015) 105 p-Pb @ 5.02 TeV

Under the assumption of a 2 \rightarrow 1 production process the sampled Bjorken-x ranges are – Backward(anti-shadowing region): 3.6·10⁻² < x < 1.6·10⁻¹ (Y) and 1.2·10⁻² < x < 5.3·10⁻² (J/ ψ) – Forward(shadowing region): 5.5·10⁻⁵ < x < 2.5·10⁻⁴ (Y) and 1.8·10⁻⁵ < x < 8.1·10⁻⁵ (J/ ψ)

R_{pPb} comparisons : LHCb and ALICE

ALICE-PUBLIC-2014-002 LHCb-CONF-2014-003 p-Pb @ 5.02 TeV

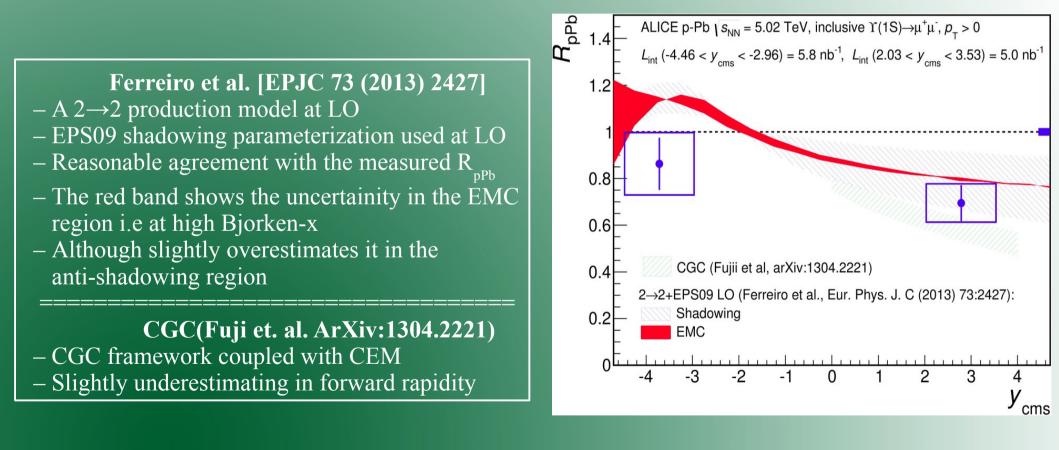
Comparison with LHCb R_{pPb} of $\Upsilon(1S)$:


- Both experiments show compatible measurements

 $-R_{pPb}$ systematically higher for LHCb than ALICE

Model comparisons with R_{pPb} of $\Upsilon(1S)$ [I]

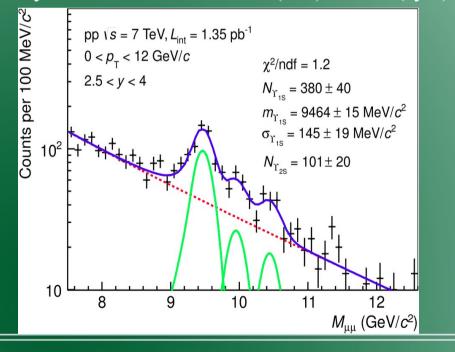
PLB 740 (2015) 105 p-Pb @ 5.02 TeV

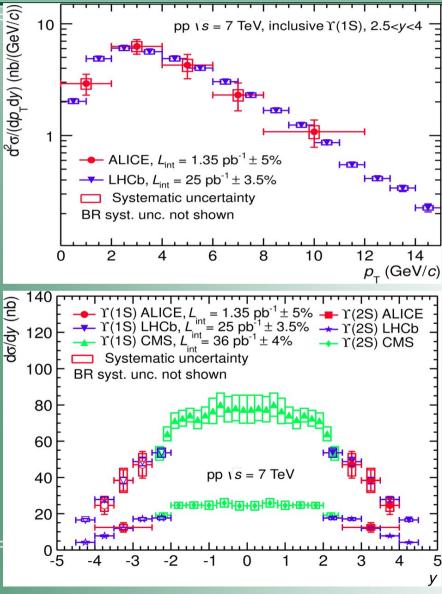

Arleo et al. [JHEP 1303 (2013) 122] - Model has a contribution from coherent parton energy loss – With or Without shadowing (EPS09) calcuations - Forward: Better agreement with ELoss and shadowing 0.8 - Backward: Better agreement with ELoss only 0.6 Vogt [arXiv:1301.3395] 0.4 - NLO CEM calculation - EPS09 shadowing parameterization at NLO used 0.2 – Fair agreement with measured R_{nPb} within uncertainties dominated by EPS09 parameterizations – But slight overestimation

Debasish Das (SINP)

Model comparisons with R_{pPb} of $\Upsilon(1S)$ [II]

PLB 740 (2015) 105 p-Pb @ 5.02 TeV

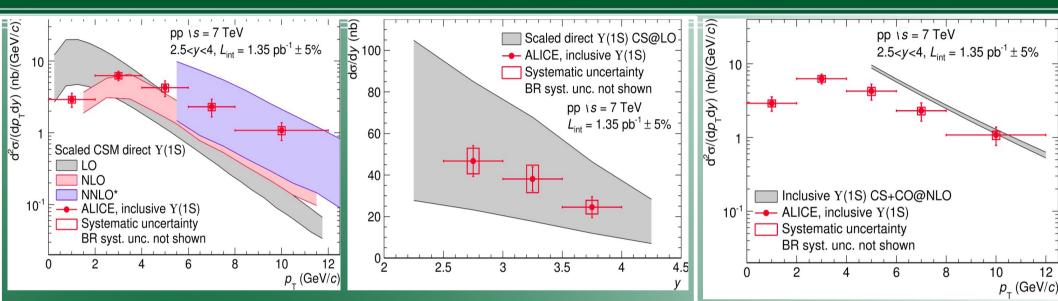



Debasish Das (SINP)

Results @ p-p 7 TeV

EPJC 74 (2014) 2974 p-p @ 7 TeV

- $-\Upsilon(1S)$ and $\Upsilon(2S)$ yields measured in pp @ 7 TeV
- Υ cross-section vs $\boldsymbol{p}_{_{\mathrm{T}}}$ and rapidity
- Results in good agreement for Υ(1S) and Υ(2S) with LHCb results [EPJ C 72 (2012) 2025]
- Fraction of inclusive $\Upsilon(1S)$ coming from $\Upsilon(2S)$ decays : $f^{\Upsilon(2S)} = 0.90 \pm 0.027(\text{stat}) \pm 0.005(\text{syst})$


https://aliceinfo.cern.ch/ArtSubmission/node/189

23

Debasish Das (SINP)

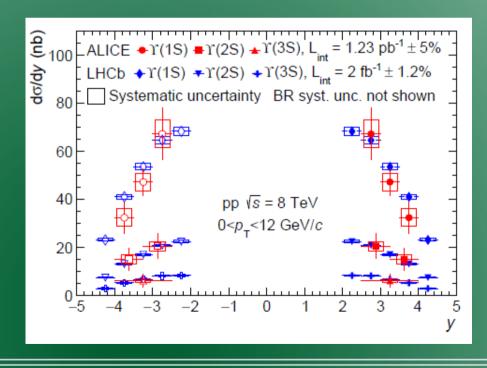
Comparisons with Models : p-p 7 TeV

EPJC 74 (2014) 2974 p-p @ 7 TeV

Color Singlet Model [NPA470 (2013) 910]

- Calculations for LO and NLO
- Qualitative features like data for low p_{T} and rapidity dependence
- Underestimates the data at high p_{T}
- Also the leading- p_{T} NNLO contributions
- Better agreement at high p_{T} , but with large uncertainties

Non-Relativistic QCD (NRQCD) [PRD84 (2011) 114001, PRD85 (2012) 114003] -- Theory overestimates the data


-- Smaller disagreement at high p_{T}

Y(2S) -to-Y(1S) ratio in good agreement with CSM and NRQCD approach[Mod. Phys. Lett. A 28, 1350120 (2013)]

Results @ p-p 8 TeV

submitted to EPJC p-p @ 8 TeV

- $-\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ yields measured in pp @ 8 TeV
- Υ cross-section vs $\boldsymbol{p}_{_{T}}$ and rapidity
- Results compared with LHCb results
 [JHEP 1511 (2015) 103]

https://aliceinfo.cern.ch/ArtSubmission/node/1827

Summary and Outlook

The production of inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ at forward rapidity has been measured in pp collisions at $\sqrt{s} = 7$ TeV and 8 TeV [also $\Upsilon(3S)$] (submitted)

- The production of inclusive $\Upsilon(1S)$ in Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 2.76$ TeV shows
- -- Strong suppression of Ŷ(1S) at forward rapidity than at central rapidity. However new CMS data show more compatibility with ALICE in rapidity
 -- Available models do not reproduce the strong rapidity dependence of the R_{AA} and underestimate the measured suppression at forward rapidity
 What role do CNM effects play?

The production of inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ in p-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV which shows – A suppression of $\Upsilon(1S)$ at the forward rapidity (small-x region); Similar R_{_{pPb} as for J/ ψ – No indication, within uncertainties, of different

CNM effects on $\Upsilon(2S)$ with respect to $\Upsilon(1S)$

Data taking and analysis goals for 2015

pp@13 TeV
(very preliminary statistics)

RUN II : ~1500 $\Upsilon(1S)$ [for two major periods]

Pb-Pb in RUN II

- 5.02 TeV Energy
- -- with respect to 2011

Initial results show

- $-\sim 1100 \Upsilon(1S)$
- Reachable goals
- 3-4 centrality bins with smaller stat uncertainty
- Will be exciting if an betterment in $\Upsilon(2S)$ signal

https://indico.cern.ch/event//353424

[Run-II prospects discussed in DQ meeting and QM poster] Quark Matter-2014 [ALICE]: https://indico.cern.ch/event/219436/session/2/contribution/133[D.Das]

Debasish Das (SINP)

Perspectives of Run-II : p-Pb

- 1. pPb @ 5 TeV (L_{int} \simeq RUN I $\rightarrow \times$ 2 stat) pPb : 2.03<yCM<3.53 : 5.5 10⁻⁵ < xY(1S)< 2.48 10⁻⁴ Pbp: -4.46<yCM<-2.96 : 3.65 10⁻² < xY(1S)< 1.63 10⁻¹
- 2. pPb @ 8 TeV ($L_{int} \simeq RUN I \rightarrow \times 2 stat$)

pPb : 2.03 < yCM < 3.53 : $3.46 \ 10^{-5} < xY(1S) < 1.55 \ 10^{-4}$

Pbp: -4.46 < yCM < -2.96: 2.28 $10^{-2} < xY(1S) < 1.02 \ 10^{-1}$

- $\rightarrow 8 \text{ TeV} x$ -Bjorken closer to the PbPb (cold effect)
- $\rightarrow R_{CP}$ of excited states

 \rightarrow pp ref at 8 TeV make the R_{CP} measurement of $\Upsilon(1S)$ and $\Upsilon(2S)$ ready to be published....

3. In favor to 8 TeV

Other slides

Debasish Das (SINP)

Systematics in pp @ 7 TeV

EPJC 74 (2014) 2974 p-p @ 7 TeV

Source	Centrality	Rapidity	Integrated
Signal extraction	5-6% (II)	5 -10 % (II)	5%
Input EMC distributions	4% (I)	5-7% (II)	4%
Tracking efficiency	10% (I)	9 -1 1% (II)	10%
Trigger efficiency	2% (I)	2% (II)	2%
Matching efficiency	1% (I)	1% (II)	1%
$\langle T_{AA} \rangle$	3-4% (II)	3% (I)	3%
N _{MB}	4% (I)	4% (I)	4%
$BR_{\gamma(1S)\to\mu^+\mu^-} \times \sigma_{\gamma(1S)}^{pp}$	4% (l)	4-7% (II) 4% (I)	4%

Systematics in p-Pb @ 5.02 TeV

PLB 740 (2015) 105 p-Pb @ 5.02 TeV

Source	Backward rapidity	Forward rapidity
Signal extraction: $\Upsilon(1S)$	5%-6% (II)	4%-6% (II)
Signal extraction: $\Upsilon(2S)$	12% (II)	1 2 % (II)
Input MC parameterization: $\Upsilon(1S)$	2%-5% (II)	4%-6% (II)
Input MC parameterization: $\Upsilon(2S)$	5% (II)	5% (II)
Tracking efficiency	6% (II)	4% (II)
Trigger efficiency	2% (II)	2% (II)
Matching efficiency	1% (II)	1% (II)
$\sigma_{pp}^{\Upsilon(1S)}$ (interpolation)	11%-13% (II)	7%–12% (II)
\mathscr{L} (correlated)	1.6% (I)	1.6% (I)
\mathscr{L} (uncorrelated)	3.1% (II)	3.4% (II)

Debasish Das (SINP)

Systematics in Pb-Pb @ 2.76 TeV

PLB 738 (2014) 361 ALICE-PUBLIC-2014-001 Pb-Pb @ 2.76 TeV

Source	Centrality	Rapidity	Integrated	
Signal extraction	5-6% (II)	5–10% (II)	5%	
Input EMC distributions	4% (I)	5-7% (II)	4%	
Tracking efficiency	10% (I)	9 –1 1% (II)	10%	
Trigger efficiency	2% (I)	2% (II)	2%	
Matching efficiency	1% (I)	1% (II)	1%	
$\langle T_{\rm AA} \rangle$	3-4% (II)	3% (I)	3%	
N _{MB}	4% (I)	4% (I)	4%	
$BR_{\gamma(1S)\to\mu^+\mu^-} \times \sigma_{\gamma(1S)}^{pp}$	4% (I)	4–7% (II) 4% (I)	4%	