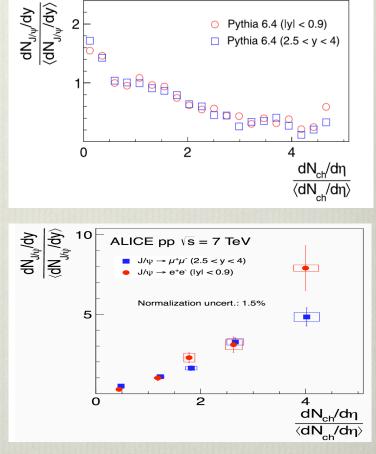
J/Psi Measurement in Dimuon channel for pp@13TeV

Dhananjaya Thakur Supervisor: Dr. Raghunath Sahoo Indian Institute of Technology Indore

ALICE-INDIA MEETING SINP Kolkata 06-02-2016

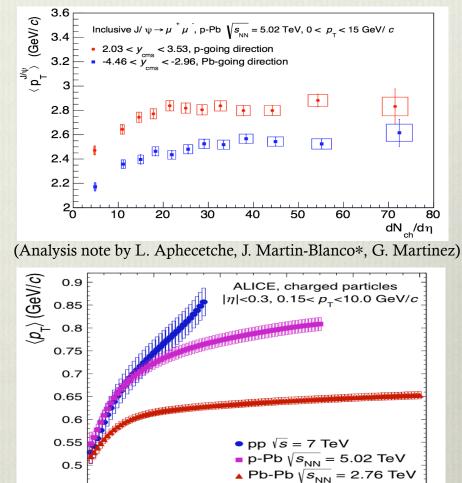
Out Line


- Introduction and Motivation
- $> J/\psi$ Characteristics
- > ALICE Muon Spectrometer Detector
- > Analysis Strategy
 - ✓ Data set and cuts
 - \checkmark J/ ψ reconstructions
- > Preliminary results
- Future plans

Introduction and motivation

The understanding of quarkonium production in hadronic collision stays very interesting as always.

* Results of J/ ψ relative yield v/s $dN_{ch}/d\eta$ in pp@7 TeV.


- The 1st figure shown is the relation between the multiplicity distributions generated for minimum bias events and events containing J/ \u03c6 from hard scatterings.
- > A decrease of the J/ ψ multiplicity w.r.t event multiplicity is observed.
- ➢ On the other hand experiment observe (2nd fig.) the increase of J/ ψ production with event multiplicity.
- It can not be understood by a simple 2 --> 2 hard partonic scattering scenario (PYTHIA).
- This might be due to Multi Parton Interaction(MPI).

⁽Physics Letters B 712 (2012) 165-175)

* Results of multiplicity v/s J/ $\psi < p_T >$ In pPb @ 5.02 TeV

- ➤ In Fig.1 multiplicities beyond certain value, the J/ ψ $\langle p_T \rangle$ shows a trend towards saturation.
- The observed saturation on the J/ψ ⟨p_T⟩ could indicate that the production mechanism does not vary with multiplicity.
- > The 2nd figure shows the chargedparticle transverse momentum spectrum, $\langle p_{\rm T} \rangle$, and its correlation with the charged-particle multiplicity *N*ch.

40

60

80

100

N_{ch}

> This analysis aims to investigate J/ ψ relative yield and mean p_T as a function of the dN_{ch}/d η for high multiplicity environment where there is higher probability of hard scattering like pp@13TeV.

0.45^L0

20

⁽Physics Letters B 727 (2013) 371–380)

J/Psi Characteristics

The J/ ψ is the first excited state (1S) of charmonium (i.e bound state of a charm quark and a charm anti-quark).

Symbol	Quark content	$\frac{\text{Rest mass}}{GeV/c^2}$	Charge	Spin	Parity	Mean Life
J/ψ	$c\bar{c}$	3.0969	0e	1	-ve	7.2×10^{-21} sec

Decay Channel

- > In experiment J/ψ decay observed to be through leptonic decays, hadronic decays and radiative decays.
 - ✓ Leptonic decay

$$J/\psi - > \gamma^* - > l^+ + l^-$$

✓ Hadronic decay

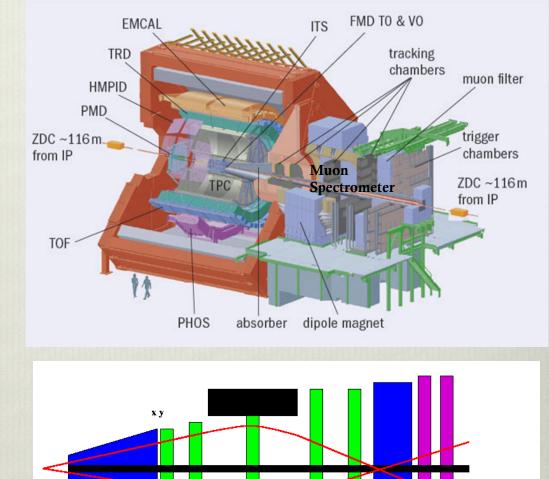
$$J/\psi - > \gamma^* - > Hadrons$$

 $J/\psi - > g + g + g - > Hadrons$

✓ Radiative decay

$$J/\psi - > \gamma + g + g - > \gamma + Hadrons$$

> Hadronic decay modes of J/ψ are strongly suppressed because of the OZI Rule. This is why the J/ψ has a significant branching fraction to leptons.


ALICE INDIA Meet 6th Feb. 2016

ALICE Muon Spectrometer

- ALICE is a dedicated heavy ion detector design for study of system created in heavy ion collisions in a high multiplicity environment.
- > The sub system *Muon spectrometer* is dedicated for the study of quarkonium decaying to $\mu^+\mu^-$.
- The muon spectrometer is used to study muon produced in -2.5 < η <- 4 (2° < θ < 9°).

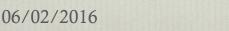
 \succ Full Φ coverage

The muon spectrometer consists of absorbers, a muon dipole magnet, muon filter (iron wall), trigger system and tracking system.

в

Magnet

Trigger chambers


Filter

ху

Tracking chambers

Absorber

ALICE

Data Sample

- ✤ The analysis has been done using the LHC15g period from 2015 pp@13 TeV data.
- * AOD files are used with the data path *muon_calo_pass1/AliAOD.Muons.root*

Run list:- (24 run numbers)

231321, 231568, 231323, 231322, 231320, 231319, 231317,231316, 231290, 231291, 239292, 231210, 230985, 230948,230934,230699,230697,230683, 230457,230452,230419,230305,230300,230293

Platform used for the Analysis

plugin->SetAPIVersion("V1.1x"); plugin->SetROOTVersion("v5-34-30-1"); plugin->SetAliROOTVersion("v5-06-33"); plugin->SetAliPhysicsVersion("v5-06-33-01");

Selection Criteria

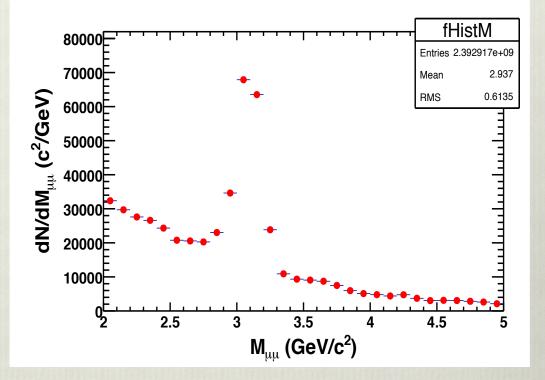
Event:

 $|Z_{vtx}| < 10.0 \ cm$ CMUL7-B-NOPF-MUFAST trigger

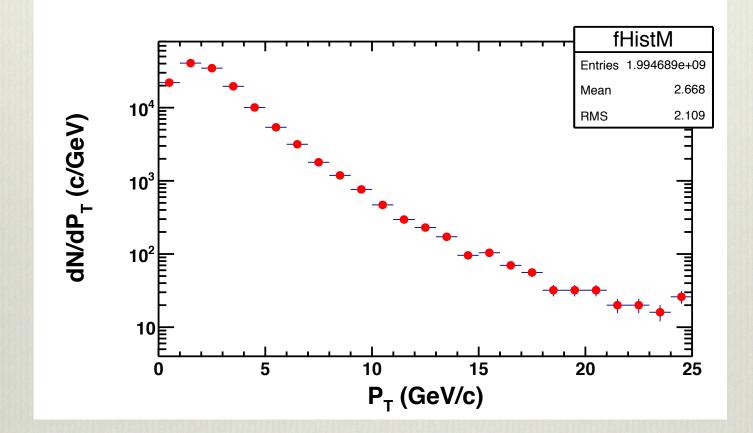
Tracks:

 $-4.0 < \eta < -2.5$ (on both muons) $17.6 < R_{abs} < 89.5$ (on both muons) (radial transverse position of muon tracks at the end of the absorber)

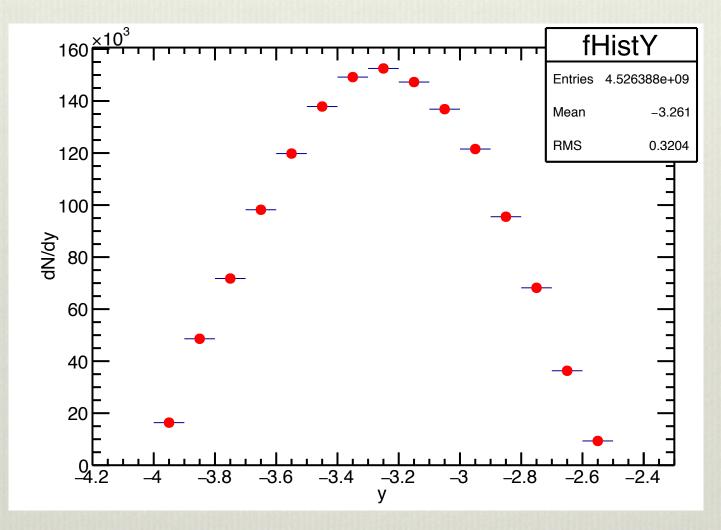
-4.0 < y < -2.5 (On dimuon pair)


Both muon matching the low p_T trigger.

ALICE INDIA Meet 6th Feb. 2016


Dimuon Invariant mass reconstruction

To do:


> Extraction of J/ψ signal with removal of background by fitting invariant mass spectrum.

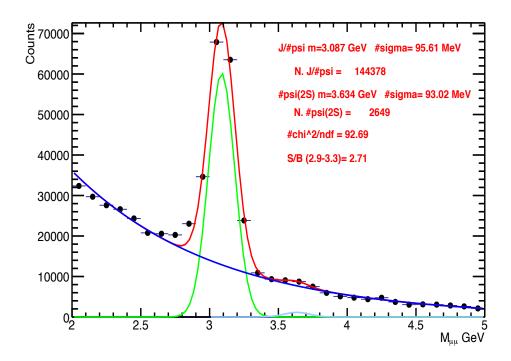
Dimuon Transverse momentum reconstruction

Dimuon rapidity reconstruction

Future Plan

- The fitting of invariant mass spectrum with proper background subtraction to be done to extract the J/Psi signal.
- ✤ Q.A analysis will be done to select proper run number.
- ✤ Like to do Multiplicity analysis at pp@13TeV.

Thanks


Back up

06/02/2016

ALICE INDIA Meet 6th Feb. 2016

Fit Function

Gaussian(Signal) + Exponential(Back ground)

