

Estimation of initial temperature of high multiplicity pp event at 7 TeV in the light of Color String Percolation Model (CSPM)

Pranjal Sarma Department of Physics, Gauhati University

With Nur Hussain (GU), B. Bhattacharjee (GU), B.K. Srivastava (Purdue University)

ALICE-India Meeting 2016, 7th Feb, SINP, Kolkata

Outline

- Introduction
- Physics Motivation: Temperature estimation using Color String Percolation Model (CSPM)
- > Analysis details
- Results

>> Determination of color suppression factor $F(\xi)$

Summary and outlook

Introduction

- The main goal of relativistic heavy ion collision is to study the de-confined matter, called Quark Gluon Plasma (QGP)
- Percolation theory can be used to describe the transition from hadronic to QGP state[1].
- Several objects can form a cluster of communication.
- At a certain density of the object a spanning cluster appears, which marks percolation phase transition.
- This is defined by percoaltion density parameter.

[1] T. Celik, F. Karsch, H, Satz, Phys. Lett. B (1980) 128

Color string percolation model (CSPM)

- The CSPM describes the initial collision of two nucleon in terms of color string stretched between the projectile and the target.
- In the transverse plane, the color string may be viewed as a small disk filled with the color field created by the colliding partons (Fig.1).

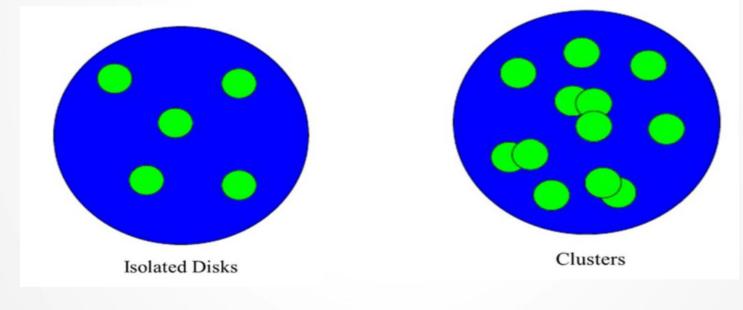


Fig.1

Fig.2

With the growing energy and size, the number of string grows and start to overlap to form clusters (Fig.2). At a certain critical density, a macroscopic cluster appears that marks the percolation phase transition (Fig.3).

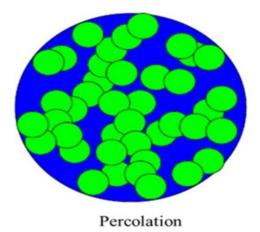


Fig.3

> The onset of percolation is given by the percolation density (ξ) parameter, $\xi = \frac{NS_1}{S}$

- Where N = number of stringed formed in the collision,
 - S_1 = transverse area of a single string,
 - S = transverse nuclear overlap area.

- Cluster of n strings behaves as a single stirgs with energy momentum that corresponds to the sum of the energy momentum of the overlapping strings.
- > The color charge (Q_n) of such strings, which cover the same area S_n as the area of single string S_1 is

$$Q_n^2 = nQ_1^2 \Longrightarrow Q_n = \sqrt{n}Q_1$$

which reduces the color charge by factor a of \sqrt{n}

> In general, $S_n > S_1$ hence the reduction factor becomes $\sqrt{\frac{nS_n}{S_1}}$

> In the framework of SM for color fileld, the multiplicity (μ_n) is proportional to color charge (Q_n) hence,

$$\mu_n = \sqrt{\frac{nS_n}{S_1}}\mu_1$$

> The average transverse momentum squared ($\langle p_T^2 \rangle$) is proportional to the string tension (σ_n). Again,

$$Q_n \sim S_n \sigma n$$

> Thus the transverse momentum squared ($\langle p_{\tau}^2 \rangle$) produced by cluster of n strings having single string transverse momentum squared $\langle p_{\tau}^2 \rangle_1$ is, $\int_{m} Q$

$$< p_T^2 >= \sqrt{\frac{nS_1}{S_n}} < p_T^2 >_1$$

At high string density,

$$<\frac{nS_1}{S_n}>=\frac{1}{F(\xi)^2}$$

Where $F(\xi)$, is the color suppression factor (due to ovelapping of the strings) and is given by,

$$F(\xi) = \sqrt{\frac{1 - e^{-\xi}}{\xi}}$$

> The net effect of $F(\xi)$ is the reduction of multiplicity (μ_n) and increase in the transverse momentum squared ($\langle p_{\tau}^2 \rangle$).

$$\mu_n = nF(\xi)\mu_1$$
 and $< p_T^2 > = \frac{< p_T^2 >_1}{F(\xi)}$

0

Determination of temperature

The Schwinger mechanism for mass less particles can be expressed in terms of p²_τ

$$\frac{dN}{dp_T^2} \sim e^{-\pi p_T^2/x^2}$$

Where $\langle x^2 \rangle$ is the average string tension.

Gaussian fluctuation of the string tension for the cluster gives rise to the thermal distribution.

$$\frac{dN}{dp_T^2} \sim e^{-p_T \sqrt{\frac{2\pi}{\langle x^2 \rangle}}}$$

th
$$< x^2 >= \pi < p_T^2 > /F(\xi)$$

with

The temperature can be expressed as

$$T(\xi) = \sqrt{\frac{\langle p_T^2 \rangle_1}{2F(\xi)}}$$

where $\langle p_{\tau}^2 \rangle_1$ is calculated using above equation at $\xi=1.2$ with universal freeze out temperature T_f=167.7 ± 2.6 MeV which gives

$$\sqrt{\langle p_T^2 \rangle_1} = 207.2 \pm 3.3 MeV$$

Analysis Details :

- > 0.25 < p_⊤ < 1.3 (GeV/c)</p>
- ▶ |eta| < 0.5
- Detector used : TPC
- Z Vertex cut : 10. cm
- > Range used to fit $\langle p_{\tau}^2 \rangle$ distribution = 0.145 1.5 (GeV/c)²

> ALICE data: p-p at
$$\sqrt{S_{NN}}$$
 = 7 TeV

LHC10d, pass2, ESD data Run Number : 125085, 126007, 126082, 126097 > MC data : p-p at $\sqrt{S_{_{NN}}} = 7 \text{ TeV}$

LHC10f6a, ESD data

- Run Number : 126097, 126007, 126082, 126088
- Multiplicity cut : VOA multiplicity cut

ALICE detector

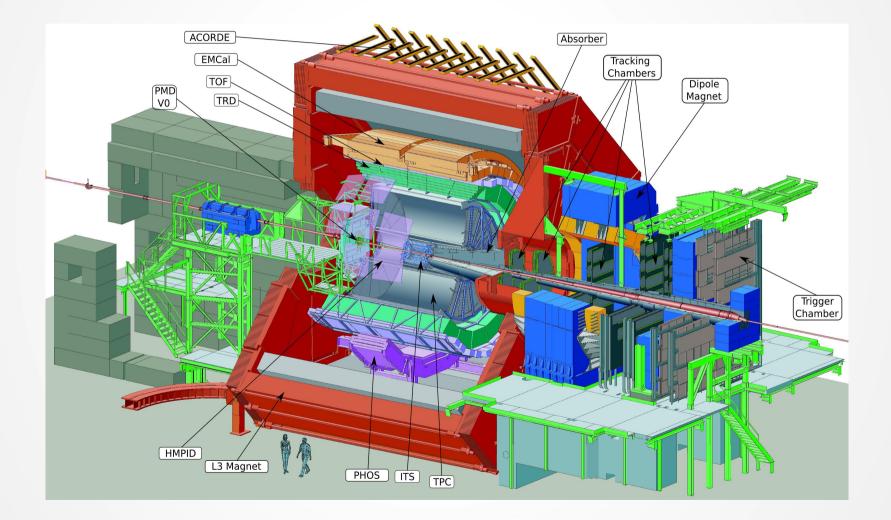


Fig. 1. ALICE detector system

Particles Identification

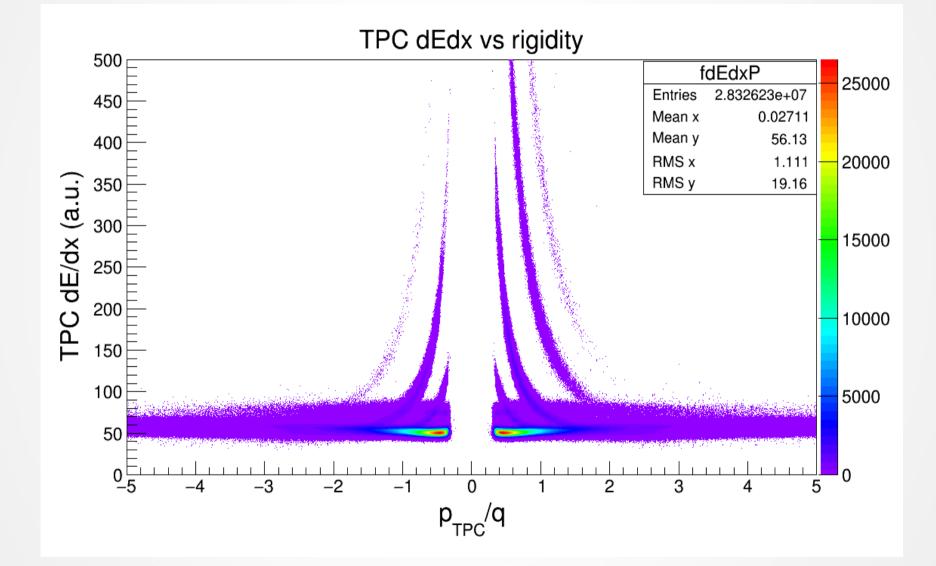


Fig. 2. Specific energy loss dE/dx in the TPC vs rigidity

Combined PID for TPC and TOF done with,

$$n\sigma_{combined} = \sqrt{(n\sigma_{TPC}^2 + n\sigma_{TOF}^2)}$$

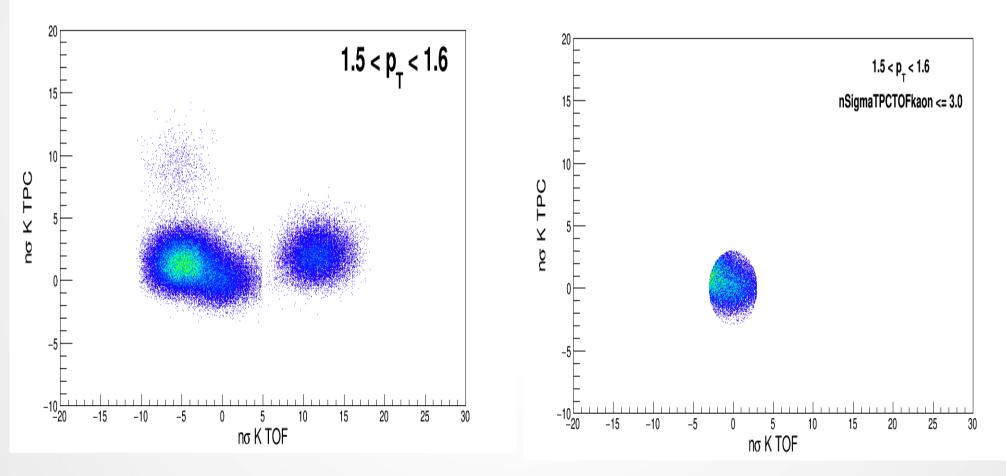


Fig. 3.PID with combined TPC and TOF detector

p_{τ} dependent efficiency for all charged particles

Efficiency = Reconstructed / Generated

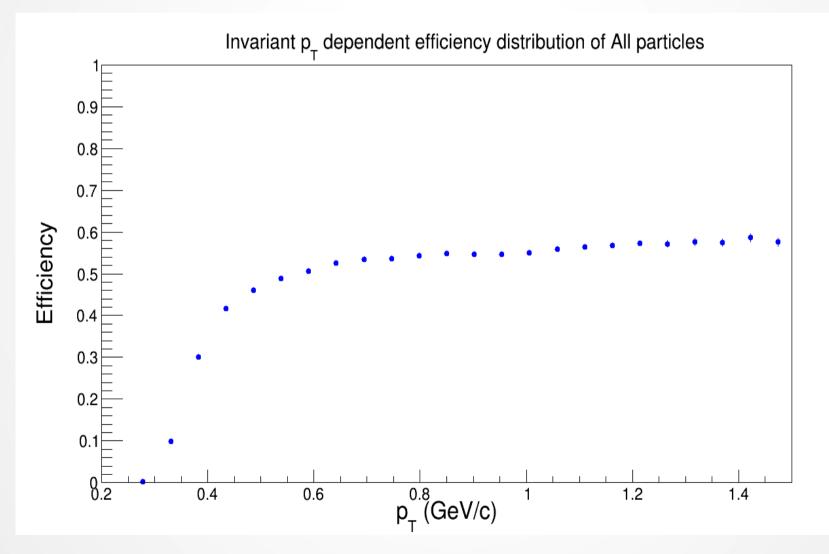
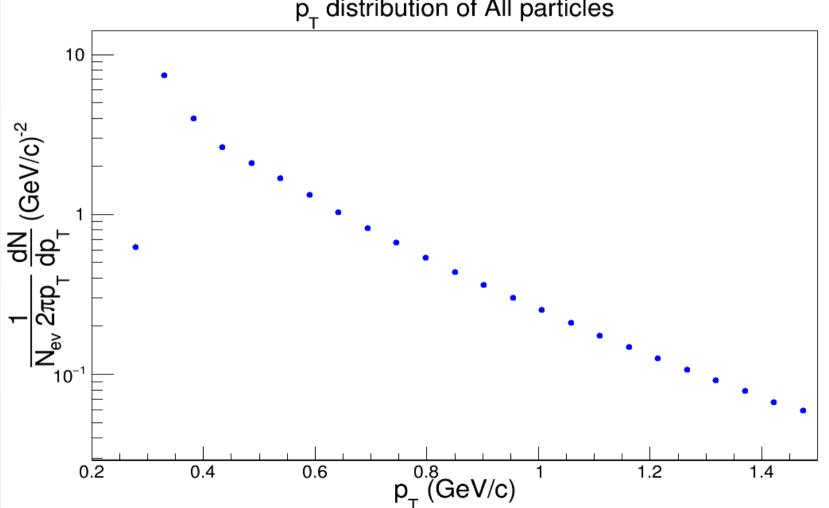


Fig. 4. p_{T} dependent efficiency distribution for all charged particles

p_{T} distribution of all charged particles



 $p_{\!\scriptscriptstyle \rm T}$ distribution of All particles

Fig. 5. Invariant p_{τ} distribution for all charged particles

Comparision of p_T distribution with ALICE preliminary results for K⁻

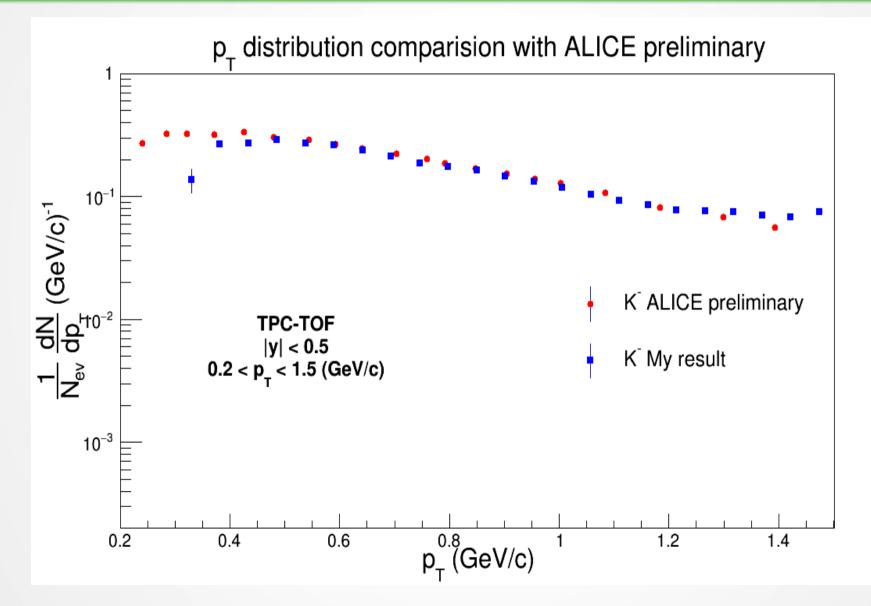


Fig. 6. Comparision of p_{T} distribution of K⁻

Determination of color suppression factor F(\xi)

To evaluate the initial value of ξ from data, a parameterization of pp collision at $\sqrt{s} = 200$ GeV is used to compute the p_T distribution,

$$\frac{dN}{dp_T^2} = \frac{a}{\left(p_0 + p_T\right)^n}$$

Where a is normalization constant, p_0 = 1.98 and n=12.88 are parameter used to fit the data.

The above parameter can be used for the high multiplicity pp event to take account of the interaction of the strings.

$$p_0 \to p_0 \left(\frac{\langle \frac{nS_1}{S_n} \rangle_{HM}}{\langle \frac{nS_1}{S_n} \rangle_{pp}}\right)^{\frac{1}{4}}$$

Thus we get,

$$\frac{dN}{dp_T^2} = \frac{b}{\left(p_0 \sqrt{\frac{F(\xi)pp}{F(\xi)_{HM}}} + p_T\right)^n}$$

Here we take
$$F(\xi)_{pp} = 1$$

VOA Multiplicity

V0A multiplicity distribution

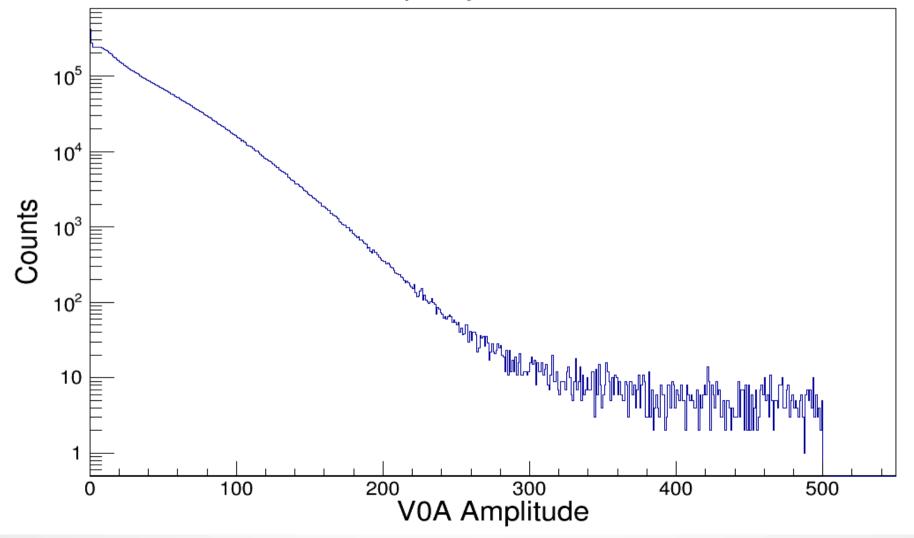
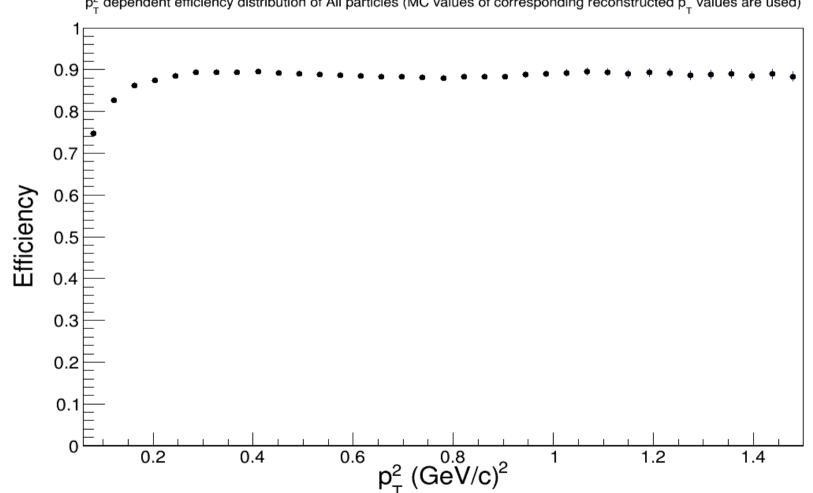


Fig. 7. VOA Multiplicity

p_{τ}^2 dependent efficiency for all charged particles



p²_T dependent efficiency distribution of All particles (MC values of corresponding reconstructed p₁ values are used)

Fig. 8. p_{τ}^2 dependent efficiency distribution for all charged particles

p_{τ}^{2} distribution of all charged particles for different mulitplicity cut

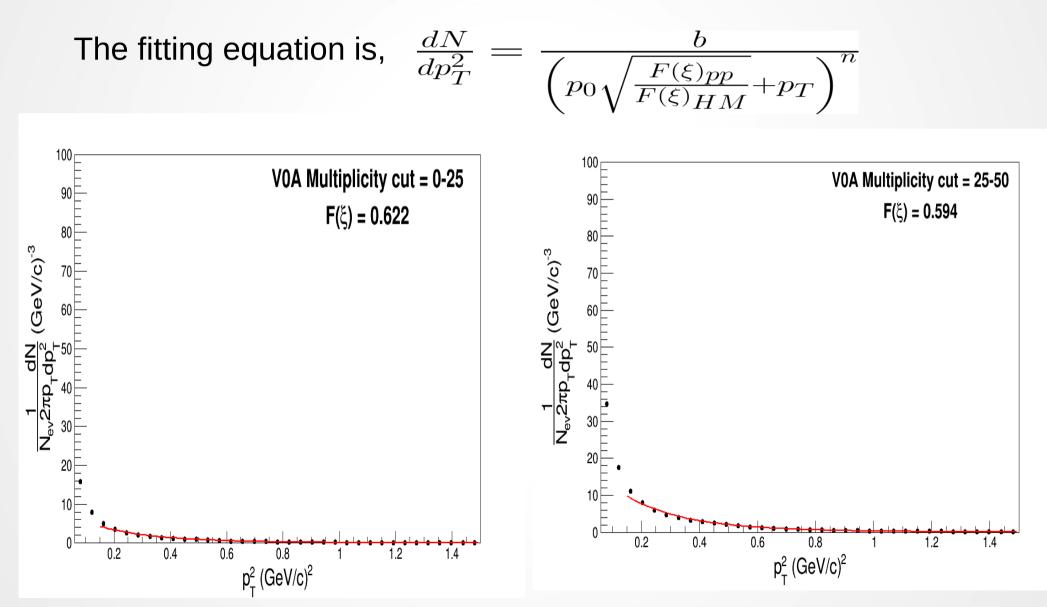


Fig. 9. Invariant p_{τ}^2 distribution for all charged particles at different multiplicity

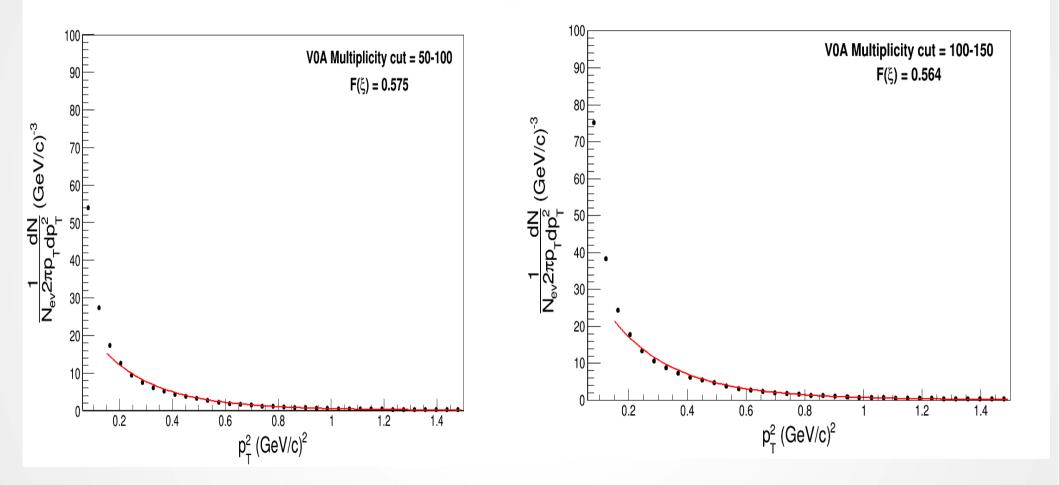


Fig. 10. Invariant p_{τ}^2 distribution for all charged particles at different multiplicity

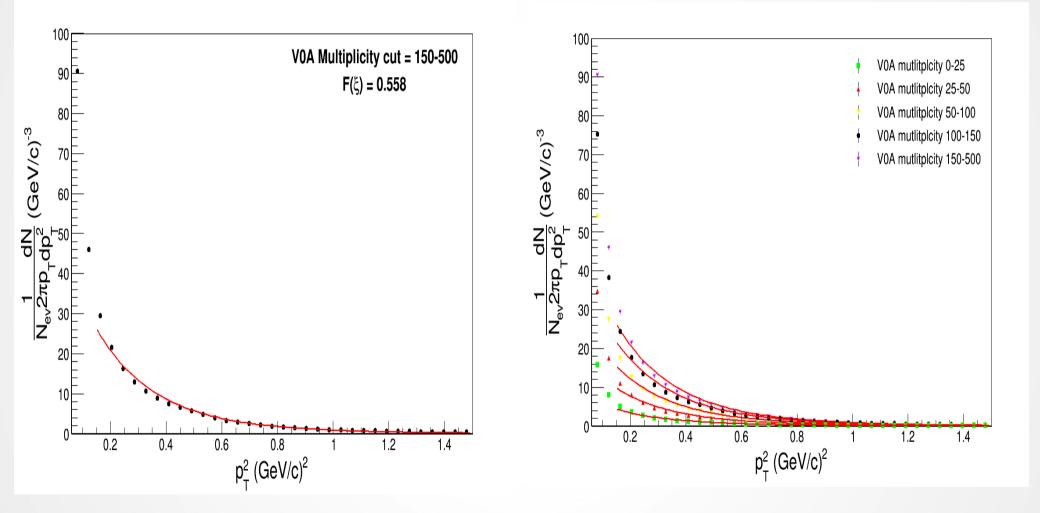


Fig. 11. Invariant p_{τ}^2 distribution for all charged particles at multiplicity 150-500 and at all multiplicity

Table 1: V0A Multiplicity cut, F(ξ), ξ and initial temperature

V0A Multiplicity cut	F(ξ)	ξ	Temperature (MeV)
0-25	0.622	2.34	185.8 ± 3.35
25-50	0.594	2.62	190.1 ± 3.44
50-100	0.575	2.85	193.2 ± 3.49
100-150	0.564	2.99	195.1 ± 3.56
150-500	0.558	3.06	196.1 ± 3.68

Table 2: Initial temperture of other system (published results)

System	Temperature (MeV)
Au+Au (0-10%) @ 200 GeV	193.6 ± 3.0
Pb+Pb (0-5%) @ 2.76 TeV (estimated)	262.2 ± 13.0

Ref: J. D. de Deus, A. S. Hirsch, C. Pajares, R. P. Scharenberg, B. K. Srivastava, Eur. Phys. J. C 72 (2012) 2123.

Summary

- Successfully extract the color suppression factor and percolation density.
- Temperature is also detemined successfully.
- The temperature obtained is much above the freeze out temperature.
- The temperature obtained from the analysis are in agreement with the published results.

Outlook

- Analyze the all avaiable energy. (2.76 TeV and 13 TeV)
- To check the variation of energy density with temperature.
- Variation of shear viscosity to entropy density ratio with temperature.

References

- R. P. Scharenberg *et al.*, Eur. Phys. J. C 71 (2011) 1510.
- J. D. de Deus *et al.*, Eur. Phys. J. C 72 (2012) 2123.
- B. K. Srivastava, Nucl. Phys. A 926 (2014) 142.
- M.A. Braun *et al.*, Physics Reports 599 (2015) 1–50
- B. K. Srivastava et al., Int.J. Mod. Phys. E Vol. 24, No. 12 (2015) 1550101
- J. Dias de Deus 1 and C. Pajares, aeXiv:hep-ph/0607101v1 10 Jul 2006

