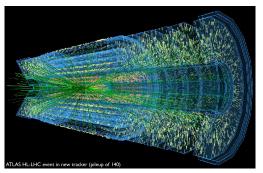
GPU Utilization in ATLAS

Sami Kama

Southern Methodist University

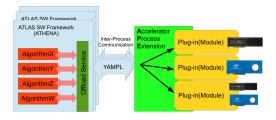

2016-01-12

Outline

- Introduction
 - GPUs?
- Q GPUs in ATLAS
 - Past Studies
 - Framework support
 - Current Status
- Outlook
 - Issues
- Summary

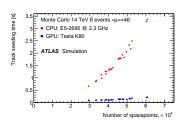
GPUs?

- Increasing LHC rate and luminosity leads to combinatorical increase in computational requirements, especially for tracking
- Many core machines already necessitates parallel processing
- Can we use GPGPUs to massively parallelize reconstruction?
 - ► In online reconstruction (Trigger)
 - ▶ In offline reconstruction (T0-Grid)
- Main criteria is the effective cost!


Past Studies

- Prototyping in Trigger
 - Level 2 trigger inner detector tracking algorithm was ported to GPUs in order to study feasibility of the system
 - ▶ Upto 12x speedup achieved wrt single threaded CPU implementation
- Prototyping in Offline
 - ► Prototyping of Kalman filter based tracking achieved ~20x speedup wrt standard CPU implementation
 - ► Some ME calculations in Monte-Carlo programs are ported to GPUs

Framework support


Introduced framework support for using offloading platforms through Accelerator Process Extension(APE) Framework.

- Hides details of implementation from framework
- Manages connection to multiple Athena processes
- Can run on the same host or a different host (Top-of-Rack machine)
- Can run on different platforms and architectures, as long as message format is consistent

Current Status

- Trigger GPU Demonstrator group is formed to study feasibility of GPU usage in Trigger farms. Studies are extended to three domains
 - Inner Detector, tracking based on Cellular Automata(CA)
 - Calorimeter, jet finding and clusterization based on CA
 - Muon, tracking based of hough transforms
- All modules have been implemented, more code is being ported to GPU
- Good speedup so far,
 - optimization studies are on going
- Feasibility report at the end of February

Issues

Adaptation in offline world is slow, mainly due to lack of manpower and availability of HW on Grid sites

- Few developers can write proper parallel code
- Even fewer can write GPU code
- HEP reconstruction code usually requires expert domain knowledge
- Due to limited computing budgets, existing experts dedicating most of their time to maintain current SW

- Grid sites usually choose their HW to serve a diverse scientific community
- Availibility of GPUs in the farms depend on other branches of science as well
- Different procurement policies result in very diverse HW
 - Code maintenance issues

Issues

- Cost effectivenes requires up to 80% of the code to be run on GPU side
- However most of the algorithms are not parallelizable
 - Need to invent new algorithms or paradigms
- There is no standardization, technology is evolving too fast (or standardization is too slow)
- It takes about 5 years from R&D code to production code
 - About 3-5 new generations of chips
- Under controlled environments (such as trigger farms) can be managed
- Common development effort and algorithm R&D might help!

Summary

- ATLAS has been investigating GPU utilization since Run 1
- Trigger GPU Demonstrator project is producing promising results
- Adaptation in offline is slow due to manpower, hardware diversity and maintenance issues
- Need to invent new paradigms and algorithms to exploit GPUs
- A common R&D effort could help in overcoming obstacles in GPU utilization

THANK YOU