
Collective Effects in Beam Tracking

GPU Parallelisation of Direct Space Charge Simulations
in PyHEADTAIL and PyPIC

Adrian Oeftiger, Ph.D. student in
BE-ABP-HSC section / Space Charge Working Group

GPU Computing Meeting, CERN

12. January 2016

Outline

1 Collective Effects: Direct Space Charge
2 GPU accelerated: PyPIC and PyHEADTAIL
3 Further GPU Studies in BE-ABP

keywords: N-body simulations, particle-in-cell algorithm, PyCUDA

1 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Introduction

collective beam dynamics ←→ N-body simulations

central question
stability of charged particle beams

some numbers:
beams modelled with ∼ 106 macro-particles
in principle, 105 to 106 revolutions in accelerator ring
usually 103 integration steps per revolution required

−→ similar to models and dynamics in astrophysics,
cosmology, plasma physics, ...

2 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Motivation

physics issue
LHC Injectors Upgrade (LIU):

increase beam intensity by 2x for HL-LHC project
=⇒ stronger beam self-fields (i.e. space charge)
=⇒ can lead to resonances: losses and beam degradation
=⇒ PS and SPS injection plateaus affected

PS cycle

SPS cycle

3 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Motivation

physics issue
LHC Injectors Upgrade (LIU):

increase beam intensity by 2x for HL-LHC project

software issues
expensive self-consistent space charge simulations:

simulation execution time vs. simulated time
−→ SPS: running O(1 week) for 1 s cycle time, need 10.8 s

growing artificial noise affects simulation validity
−→ SPS: simulations with accessible numeric parameters are

valid for O(104 turns), injection plateau = 5×105 turns

our solution: PyHEADTAIL and PyPIC
GPU accelerated simulation framework addresses software
issues and allows investigating physics at PS / SPS injection

3 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Motivation

physics issue
LHC Injectors Upgrade (LIU):

increase beam intensity by 2x for HL-LHC project

software issues
expensive self-consistent space charge simulations:

simulation execution time vs. simulated time
growing artificial noise affects simulation validity

our solution: PyHEADTAIL and PyPIC
GPU accelerated simulation framework addresses software
issues and allows investigating physics at PS / SPS injection

3 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Collective Effects

How-to: collective effects,
drift-kick model:

treat single-particle separately
from multi-particle dynamics
push all single particles through
“drift” to next interaction point
evaluate multi-particle interaction integrated over drift
apply interaction as “kick” to all particles

−→ usually coarsen distribution to evaluate interaction
strength (e.g. particle-mesh methods)

4 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Direct Space Charge Modelling

Space charge in accelerator rings:
Lorentz-boost to beam frame

=⇒ electrostatic problem

evaluate beam fields by solving
Poisson’s equation for macro-particle distribution

1 particle-to-particle: extremely slow
2 Fast Multipole Method: exaggerated binary collisions of

macro-particles need special care
3 particle-mesh methods: particle-in-cell (PIC) algorithm

is de facto standard (cell size = smoothing effect)
4 (...)

apply electric repulsion forces to all particles
5 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Particle-in-cell Algorithm

1 particles to mesh: deposit all macro-particle charges
onto (regularly distributed) mesh nodes

2 solve discretised Poisson equation on the mesh, options:
direct solving, e.g. via sparse matrices
spectral methods
Hockney’s algorithm =⇒ ‘cheap’ FFT algorithm

3 gradient of potential yields electric fields
4 mesh to particles: interpolate mesh fields to particles

6 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Hockney’s Algorithm

Poisson’s equation
∆φ(~x)= ρ(~x)

can be solved via the Green’s function method

G : ∆G(~x)= δ(~x) .

Trick: mirroring G(~x) for each plane =⇒ periodicity!
Formal solution with convoluted Green’s function

ϕ(~x)=
∫

d3y ρ(~x)G(~x ,~y)

can be expressed as Fourier transform (=⇒ FFT!),

ϕ(~x)=F
{
F {ρ}F {G}

}
.

7 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Implementation

−→ direct space charge algorithm implemented in PyPIC1),
an effort to share PIC algorithms with a python interface

−→ integrated into PyHEADTAIL2), a collective effects library

1)https://github.com/PyCOMPLETE/PyPIC
2)https://github.com/PyCOMPLETE/PyHEADTAIL

8 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

https://github.com/PyCOMPLETE/PyPIC
https://github.com/PyCOMPLETE/PyHEADTAIL

Python. Python?

Why python?
very active development of PyHEADTAIL
required to be easily extensible
sped up development process, rapid prototyping
dynamic developer community
enhanced code legibility =⇒ maintainability
data processing becomes trivial, flexible

... but isn’t that extremely slow?!
identify bottlenecks by profiling

=⇒ translate relevant parts into high-performance languages

9 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Studies with PyHEADTAIL

PyHEADTAIL

(LIU-)
SPS

2nd +
3rd order
chroma.

electron
cloud

PS

injection
oscilla-
tions

transition
crossing

headtail
modes (HL-)

LHC

RFQ
Landau
damping

double
harmonic

RF

electron
cloud

CLICdamping
rings

PSB
(LIU-PS) hollow

bunches

PyECLOUD

10 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

GPUs and PyHEADTAIL / PyPIC

on-going efforts to parallelise PyHEADTAIL on GPU:
−→ master thesis of Stefan Hegglin

ingredients to PyHEADTAIL on the GPU:
PyCUDA library by Andreas Kloeckner: exploit NumPy’s
vectorisation model
in future: PyOpenCL?
scikit-cuda library by Lev Givon for cuFFT, cuSOLVER, ...

=⇒ straight-forward porting of PyHEADTAIL to GPU,
compromise on speed

sparse matrix solving library cuSOLVER tested
−→ parallelisation unsuccessful: Poisson matrix too serial
=⇒ FFT based approach most successful

11 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

2.5D vs. 3D Model

2.5D “slice-by-slice” model:
slice bunch into n slices
solve n independent 2D transverse Poisson equations
approximation: bunch very long

−→ CPU: serial
−→ GPU: treat slices in parallel

3D model:
solve the full 3D bunch on a 3D grid

−→ CPU: too slow to be practical due to one more FFT
−→ GPU: large memory requirements due to Hockney’s

algorithm
12 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Bottleneck CPU vs. GPU

profiling of 2D implementation reveals
on CPU, FFT solving dominates
cuFFT on GPU: ∼ 30x faster
mesh deposition bottleneck on GPU, memory-bound

13 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Bottleneck CPU vs. GPU

−→ implemented K. Ahnert et al.’s molecular dynamics
algorithm from Numerical Computations with GPUs

1 sort particles by cell ID
2 determine cell boundary indices
3 1 thread ←→ 1 cell: add contributions per cell

=⇒ distributes memory access and avoids stalls (speed-up ∼3x)
13 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Resources

BE-ABP simulations carried out at
CERN: LIU-PS-GPU server
−→ 4x NVIDIA Tesla C2075 cards (mid 2011)
CNAF (Bologna): high performance cluster
−→ 7x NVIDIA Tesla K20m (early 2013)
−→ 8x Tesla K40m (late 2013)

(relevant specifications in appendix)

14 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Speed-up Results

multi-particle tracking, direct space charge: S≤ 13.2
=⇒ interaction between particles, memory-bound situation

cf. single-particle tracking study, longitudinal plane: S≤ 428 3)

=⇒ “embarrassingly parallel” computationally-bound situation
3)www.oeftiger.net/parallelisation-longitudinal-tracking/

15 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

www.oeftiger.net/parallelisation-longitudinal-tracking/

Current Applications

injection oscillations: beam envelope frequencies shifted
by space charge (beam resonances?)

identification and characterisation of relevant resonances
during SPS injection plateau

0.0 0.1 0.2 0.3 0.4 0.5
f/frev

10-8

10-7

10-6

10-5

10-4

10-3

P

[a

.u
.]

Qx0
Qy0 2Qx0

2Qy0

Figure : quadrupolar pickup spectrum for injection oscillations of
beam envelope in SPS

16 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Current Applications

injection oscillations: beam envelope frequencies shifted
by space charge (beam resonances?)
identification and characterisation of relevant resonances
during SPS injection plateau

(a) beam losses (b) beam emittance blowup
Figure : measured tune diagram during 3 s of SPS injection plateau

16 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Further Reading

relevant presentations on PyHEADTAIL and PyPIC:
PyHEADTAIL space charge suite, presented at Oxford
Space Charge 2015:
https://eventbooking.stfc.ac.uk/uploads/
spacecharge15/oeftiger-pyheadtail.pdf

overview GPU parallelisation, presented in BE-ABP-HSC
section meeting: https://espace.cern.ch/be-dep/
ABP/HSC/Meetings/GPUFFT.pptx

parallelisation approach and some physics details,
presented in (former BE-ABP-HSC) Space Charge
Working Group: http://frs.web.cern.ch/frs/Source/
space_charge/Meetings/meeting67_29.10.2015/

17 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

https://eventbooking.stfc.ac.uk/uploads/spacecharge15/oeftiger-pyheadtail.pdf
https://eventbooking.stfc.ac.uk/uploads/spacecharge15/oeftiger-pyheadtail.pdf
https://espace.cern.ch/be-dep/ABP/HSC/Meetings/GPUFFT.pptx
https://espace.cern.ch/be-dep/ABP/HSC/Meetings/GPUFFT.pptx
http://frs.web.cern.ch/frs/Source/space_charge/Meetings/meeting67_29.10.2015/
http://frs.web.cern.ch/frs/Source/space_charge/Meetings/meeting67_29.10.2015/

Conclusion: Space Charge

Successfully parallelised direct space charge on GPU
3D model made accessible for simulations
large mesh sizes and high #macro-particles =⇒ S ≤ 13

=⇒ large resolutions also address mitigating noise effects
(artefacts such as numerical emittance blow-up)

=⇒ improved validity for long-term simulations

Take-home message:
Python allows rapid development for changing demands
PyCUDA greatly simplifies concurrent GPU development

−→ minimal code maintenance, less duplicate code
−→ reasonable compromise in speed-up

18 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

Further GPU Studies: SixTrack
SixTrack: Single Particle Tracking Code (cern.ch/sixtrack)

70k lines written in Fortran 77/90
numerically portable across OS and compilers
used in the volunteer computing project LHC@Home with 200k
registered users

GPU porting is being explored in the context of LHC@Home to use volun-
teer GPU:

−→ heterogeneous hardware and software hard to test and fully deploy,
many low-end GPU expected (low FP64 FLOPS count)

D. Mikushin (Applied Parallel Computing LLC)
(indico/event/450856) demonstrated deploying with CUDA +
additional compilation stages + code annotations + special
compiler software (numerically ok without FMAC instructions, no
benchmark available)

Riccardo de Maria

19 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

cern.ch/sixtrack
indico/event/450856

Further GPU Studies: SixTrack
SixTrack: Single Particle Tracking Code (cern.ch/sixtrack)

standalone tracking library (SixTrackLib) to be used with other
codes (including SixTrack itself):

lightweight code being written in C/OpenCL for
flexibility/portability (CERN&GSoC’14-’15)

=⇒ speed-up of 250x w.r.t. single i7 core with AMD-280X
(1TFLOPS FP64, 300CHF) on first tests driven by
PyOPENCL.

if substantial and well controlled hardware/software resources are
available, there could be an interest to deploy the SixTrack using
GPU (provided reserving some time in SixTrack team).
Hardware for single particle simulation: high FP64 FLOPS.
Memory bandwidth and memory size less important.

Riccardo de Maria

19 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

cern.ch/sixtrack

Thank you for your attention!

Acknowledgements to PyHEADTAIL + PyPIC team:
Hannes Bartosik, Stefan Hegglin, Giovanni Iadarola, Kevin Li,

Annalisa Romano, Giovanni Rumolo, Michael Schenk
https://github.com/PyCOMPLETE/

https://github.com/PyCOMPLETE/

CPU Machine – Specifications

CERN BE-ABP “LIUPSGPU” machine:

CPU 2× Intel Xeon E5-2630 (v1)
CPU cores 2×6

RAM 256 GB DDR3
CPU clock rate 2.30 GHz
CPU L3 cache 15 MB
instruction set Intel AVX

32bit floating-point performance 0.1TFLOPS

Table : Relevant CPU Machine Specifications

20 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

GPU Machines – Specifications

available machines at CNAF:
http://wiki.infn.it/strutture/cnaf/clusterhpc/home

CERN BE-ABP CNAF

GPU NVIDIA Tesla C2075 NVIDIA Tesla K20 NVIDIA Tesla K40
avail. GPU devices 4 7 8

avail. GPU DDR5 RAM (per device) 5.3 GB 5.1 GB 12.3 GB
GPU clock rate 1.15 GHz 0.7 GHz 0.75 GHz

CUDA cores per device 448 2496 2880
max. no of threads per block 1024×1024×64 1024×1024×64 1024×1024×64
CUDA computing capability 2.0 3.5 3.5

32bit floating-point performance 1.0TFLOPS 3.5TFLOPS 4.3TFLOPS

Table : Relevant GPU Machine Specifications

21 of 19 Adrian Oeftiger Collective Effects in Beam Tracking

http://wiki.infn.it/strutture/cnaf/clusterhpc/home

	Appendix

