
12.01.2016

Overview of ALICE GPU computing and optimization
strategies for GPU based LHC event filtering applications

Dr. David Rohr, drohr@cern.ch
Frankfurt Institute for Advanced Studies

CERN, 12.1.2016

mailto:drohr@cern.ch

12.01.2016

2 12.01.2016

Introduction

Moore‘s Law:
Manufacturing
size, frequency,
and performance
grow exponentially.

Frequency began
to stagnate 2003.

3 12.01.2016

Introduction

Moore‘s Law:
Manufacturing
size, frequency,
and performance
grow exponentially.

Frequency began
to stagnate 2003.

GPUs are faster
than CPUs.

4 12.01.2016

Why GPUs

GPUs use their silicon for ALUs
CPUs use their silicon mainly for caches, branch prediction, etc.

Intel Nehalem NVIDIA Kepler

5 12.01.2016

Why GPUs

CPUs are designed for fast execution of serial programs.
• Clocks have reached a physical limit.
Vendors use parallelization to increase performance.

GPUs are designed for parallel execution in the first
place.

• The „only“ limit for GPU performance is heat dissipation.
• GPU clocks are usually lower than they could be.

– This saves power
– Hence more hardware can be powered in parallel
 Better overall performance

6 12.01.2016

Introduction

NVIDIA GTX280 GPU

12.01.2016

8 12.01.2016

Comparing CPU / GPU Performance

• The compute performance alone is no reasonable metric!
− The GPU is the faster chip – by construction

• We consider the following:

• Most of our applications reach about 70% or more in this metric.
• There are exclusions:
− PCI Express can limit the performance (track merger, encoding with small n / k).
− CPU Compilers are better and allow more flexible core (JIT-compiled encoding).
− CPU caches can better hide memory latencies (Electron Microscopy).

9 12.01.2016

Comparing CPU / GPU Performance

• Overview
of speedup
in several
applications:

10 12.01.2016

GPU Expectations

• Many problems can be ported to GPUs efficiently.
• Some problems suffer inherent bottlenecks, when brought to GPUs:

- PCI Express Bandwidth
- Compiler Inefficiencies

• Often easy to spot
- Allows for easy plausibility checks whether GPU adaptation is

possible.
• Reasonable, very rough speedup expectation:

 about factor 3 per GPU
• Claims of larger speedup (factor 10 and above) are often

comparisons to old / unoptimized / single-core CPU software.

12.01.2016

12 12.01.2016

Overview of ALICE HLT Reconstruction

• Based on the online reconstruction, the next feature of the HLT will be online calibration.
− Reconstructed data is required to generate the calibration.
− Calibration objects fed back in processing chain and used for reconstruction.
− TPC calibration stable over several minutes Short time at the beginning needed to generate first calibration.

TPC Link 1 TPC Clus-
ter Finder GPU TPC Track

Reconstruction
TPC Link 2 TPC Clus-

ter Finder

ITS Link 1

.

.

.

.
 ITS

Reconstruction

Output
Link 1

Output
Link 2

Event
Trigger

Custom
Source 1

Custom
Source 2

Event
Building

Calibration

In this example, custom source 1
provides sensor data such as temperature
and pressure to the calibration component

on a per-event level.

Sensor
Data

For reproducibility, we store which
calibration object we used for every event.

Zero Message Queue (Zero-MQ)
Asynchronous Side Channel

Many instances of this building block, at least one per HLT compute node.

13 12.01.2016

ALICE HLT Components

• CPU utilization per compute node – at ca. 1kHz Pb-Pb Min-Bias:
• TPC Cluster Finder FPGA
• TPC Compression: 4 CPU cores
• TPC Cluster Transformation: 1 CPU core
• TPC Track Finder: 2 CPU cores + GPU – Alternatively: 20 CPU cores
• TPC Track Fit: 1 CPU core
• VZERO: < 1 CPU core
• ZDC: < 1 CPU core
• EMCAL RECO: 7 CPU cores
• ITS Cluster Finder: 1-2 CPU cores
• ITS SPD Vertexer / Standalone Tracker: 1 CPU core
• TPC prolongation to ITS: 3 CPU cores
• ESD / Flat-ESD Creation: 3 + 2 CPU cores
• HLT QA: < 1 CPU core
• Luminuous Region: < 1 CPU core
• Trigger and Readout List creation: < 1 CPU core
• TPC Calibration (140 Hz asynchronously): 6 CPU cores
• Framework: 2 CPU cores (Total: 34 cores – virtual HT cores)

14 12.01.2016

ALICE HLT Reconstruction Sumary

• Significant processing requirements comes from:
• TPC cluster finding: Handled by FPGA
• TPC Compression: 12% (CPU algorithm being improved)
• EMCAL: 21% (New software, not fully optimized yet)
• ESD Creation: 9% (No speedup possible due to root files Flat ESD without root)
• ITS Tracking: 9% (Speedup possible, perhaps combined TPC+ITS GPU tracking)
• TPC Calibration: 21% (Complex and extensive offline code, speedup possible,

GPU adaptation unlikely)

• TPC Tracking: 38% - Single processing hotspot
 TPC tracking ported to GPU

• With RCU2: Higher rate, more out-of-bunch pile-up: fraction of TPC tracking in
total workload will increase.

12.01.2016

16 12.01.2016

Tracking at ALICE

ALICE events:

TPC Hits in heavy ion collision.

17 12.01.2016

Tracking at ALICE

ALICE events:

TPC tracks in heavy ion collision.

18 12.01.2016

Tracking Algorithm

• TPC Volume is split in 36 sectors.
− The tracker processes each sector individually.
− Increases data locality, reduce network bandwidth, but reduces parallelism.
− Each sector has 160 read out rows in radial direction.

19 12.01.2016

Tracking Algorithm

• TPC Volume is split in 36 sectors.
− The tracker processes each sector individually.
− Increases data locality, reduce network bandwidth, but reduces parallelism.
− Each sector has 160 read out rows in radial direction.

• 1. Phase: Sektor-Tracking (within a sector)

− Heuristic, combinatorial search for track seeds using a
Cellular Automaton.
 A) Looks for three hots composing a straight line (link).
 B) Concatenates links.

20 12.01.2016

Tracking Algorithm

• TPC Volume is split in 36 sectors.
− The tracker processes each sector individually.
− Increases data locality, reduce network bandwidth, but reduces parallelism.
− Each sector has 160 read out rows in radial direction.

• 1. Phase: Sektor-Tracking (within a sector)

− Heuristic, combinatorial search for track seeds using a
Cellular Automaton.
 A) Looks for three hots composing a straight line (link).
 B) Concatenates links.

− Fit of track parameters, extrapolation of track, and search for additional
clusters using the Kalman Filter.

21 12.01.2016

Tracking Algorithm

• TPC Volume is split in 36 sectors.
− The tracker processes each sector individually.
− Increases data locality, reduce network bandwidth, but reduces parallelism.
− Each sector has 160 read out rows in radial direction.

• 1. Phase: Sektor-Tracking (within a sector)

− Heuristic, combinatorial search for track seeds using a
Cellular Automaton.
 A) Looks for three hots composing a straight line (link).
 B) Concatenates links.

− Fit of track parameters, extrapolation of track, and search for additional
clusters using the Kalman Filter.

• 2. Phase: Track-Merger
− Combines the track segments found in the individual sectors.

22 12.01.2016

Illustration of splitting in sectors

Sectors of ALICE TPC:

Sector-local seeding can lead to
some inefficiencies at sector borders.

23 12.01.2016

Structure of HLT TPC Tracking

Tracking split in 4 main (abstract) steps.
• Each step is internally split in technical substeps.
• Phase 1 (Steps 1 and 2) on GPU, Phase 2 (Steps 3 and 4) and CPU!

 # Task How Locality Description Time Device
1 Seeding Cellular

Automaton
Very Local (hit
and adjacent

hits)

Find short track candidates of 3 to about 10
clusters.

Ca 30% GPU
 or CPU

2 Track
following

Kalman Filter
(simplified)

Sector-local Fit parameters to candidate, find full track
segment in one sector via track following with
simplified Kalman filter (e.g. constant B-field,
y and x uncorrelated, …)

Ca 60%

3 Track
Merging

Combinatorics /
Mathematics

Global Merge track segments within a sector and
between sectors

Ca 2% CPU only

4 Track Fit Kalman Filter
(full)

Global Full track fit with full Kalman filter (polynomial
approximation of B-field)

Ca 8%

24 12.01.2016

GPU Tracking

Parallel Track Construction

Current Row

Tracks are independent and can be processed simultaneously
Because of Data Locality the Tracks are processed for a common Row

12.01.2016

26 12.01.2016

Optimizations (Performance)

• Separation of event in sectors enables the use of a pipeline Pipeline:
− Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.

27 12.01.2016

Optimizations (Performance)

• Separation of event in sectors enables the use of a pipeline Pipeline:
− Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.

• Problem: tracks are differently long. Through dynamic scheduling, GPU can be
fully used.

• Black : Idle
• Blue : Track Fit
• Green : Track Extrapolation

No dnymic scheduling With dynamic scheduling

28 12.01.2016

• CPU and GPU tracker (in CUDA) share common source files.
• Specialist wrappers for CPU and GPU exist, that include these common files.

 Same source code for CPU and GPU version
− The macros are used for API-specific keywords only.
− The fraction of common source code is above 90%.

common.cpp:
__DECL FitTrack(int n) {
….
}

cpu_wrapper.cpp:
#define __DECL void
#include ``common.cpp``

void FitTracks() {
 for (int i = 0;i < nTr;i++) {
 FitTrack(n);
 }
}

cuda_wrapper.cpp:
#define __DECL __device void
#include ``common.cpp``

__global void FitTracksGPU() {
 FitTrack(threadIdx.x);
}

void FitTracks() {
 FitTracksGPU<<<nTr>>>();
}

Common tracker source code

29 12.01.2016

GPU Tracker Performance

Performance: GTX580 GPU almost three times as fast as 6-core processor.

Compute-intense
substeps show
speedup on GPU.

Some irrelevant
substeps run on GPU
but without speedup.

Still necessary to
avoid data movement.

30 12.01.2016

Results

GPU performance
independent from CPU.

Tracking times scales linearly
with input data size.

Approx. 150 times faster than offline tracking.

31 12.01.2016

• Important new GPU feature relevant for GPU tracker:
• GPUs can run multiple different kernels in parallel.
• This can improve GPU utilization. Preliminary tests show 15% improvement already.

• GPU tracking time on central PbPb event.

• NVIDIA GTX480 (Fermi) 448 shader, 1215 MHz 174 ms (used in the old HLT)
• NVIDIA GTX780 (Kepler) 2304 shader, 863 MHz 155 ms
• NVIDIA Titan (Kepler) 2688 shader, 837 MHz 146 ms
• AMD S9000 (Tahiti) 1792 shader, 900 MHz 145 ms (used in the new HLT)
• NVIDIA GTX980 (Maxwell) 2048 shader, 1126 MHz 120 ms

• With both NVIDIA and AMD as possible vendors, we are no longer vendor-locked!

• New GPUs with more shaders not optimally used yet. We assume a speed benefit
of up to 30% by further tuning the tracker for the new GPU chips.

Performance on new GPUs

32 12.01.2016

The first runs showed some inconsistencies in cluster to track assignment
statistics, but not in physical observables. Three causes were identified:

• Cluster to track assignment
• Track Merger
• Non-associative floating point arithmetic

Consistency of Tracking Results

33 12.01.2016

Consistency of Tracking Results

• Cluster to track assignment
• Problem: Cluster to track assignment was depending on the order of the

tracks.
– Each cluster was assigned to the longest possible track. Out of two

tracks of the same length, the first one was chosen.
– Concurrent GPU tracking processes the tracks in an undefined order.

• Solution: Both the chi² and the track length are used as criteria. It is

extremely unlikely that two tracks coincide in both values.

• Similar problem in track merger, which depended on track order.

34 12.01.2016

Consistency of Tracking Results

• Non associative floating point arithmetic
• Problem: Different compilers perform the arithmetic in different order (also on

the CPU).

• Solution: Cannot be fixed, but...
– Slight variations during the extrapolations do not matter as long as the

clusters stay the same.
– Inconsistent clusters: 0,00024%

35 12.01.2016

Summary (ALICE Tracking)

• HLT Tracking 15 times faster than offline tracking.
• With GPU additional speedup of 10 compared to CPU Total speedup 150.

• GPU and CPU results consistent and reproducible.

• GPU Tracker runs on CUDA, OpenCL, OpenMP – one common shared source code.

• Now: 180 compute nodes with GPUs in the HLT
• First deployment: 2010 – 64 GPUs in LHC Run 1.
• Since 2012 in 24/7 operation, no problems yet.

• Cost savings compared to an approach with traditional CPUs:
• About 500.000 US dollar during ALICE Run I.
• Above 1.000.000 US dollar during Run II.
• Mandatory for future experiments, e.g.. CBM (FAIR, GSI) with >1TB/s data rate.

36 12.01.2016

Strategies for GPU optimization

• Nearly all GPU programs I implemented use a pipeline and asynchronous processing:
• Concurrent GPU processing, CPU processing, DMA transfer.

• A shared common source code for CPU and GPU version improves

• Verification
• Debugging
• Maintainability

• Sometimes the algorithm can be changed slightly to neglect concurrency effects

• Improves consistency and reproducibility

• Every problem might require custom optimization:
• Like track length variation in ALICE TPC

12.01.2016

• Client-server architecture allows GPU resources to be shared amongst multiple trigger instances
Data transfer is done over shared memory segment

• Also used as CUDA host buffer

• Minimizes integration surface in trigger software - only POSIX required

• Allows for GPU memory resources (e.g. hardware maps) to be shared

ATLAS – Client-Server-Architecture

Bytestream decoding and clustering show a 26x speed-up against single-threaded CPU

ATLAS – Data Preparation Results

CMS – GPU Implementation

41 12.01.2016

Socket client-server tranmission
Scheduler First-Come First-Served,

gathers multiple events and ships
them for concurrent processing

Some goodies
• Algorithm exceptions propagated to

callers
• Centralized profiling, logging
• File input / output configurable
• Outside framework execution possible

LHCb – GPU Manager Offload Tool

42 12.01.2016

Analysis

• Clustering and Tracking are dominant applications at LHC experiments.
• ALICE has deployed FPGA based cluster finding and GPU based tracking.
• ATLAS, CMS, LHCb are investigating solutions.

• ALICE has isolated hotspot for GPU: TPC track finding

• ALICE employs a custom solution only for tracking.

• ATLAS does not have such an isolated hotspot, but many more software components that
contribute equally.

• ATLAS and LHCb hence use a slightly more general approach, with GPU Manager Offload
Engine / Client-Server architecture.

• This enables easier offloading of multiple different and smaller applications.

43 12.01.2016

Summary (Strategy Ideas)

• Find hotspot, port hotspot to GPU
• If several hotspot problems are tightly coupled, bring them to GPU as one instance without transfers:

• For instance, ALICE TPC track finding, track fit, ITS tracking.
• Small intermediate steps can be run on GPU without optimization effort (no speedup but less transfers).
• Try to optimize for CPU first, do not bring applications to GPU if not needed.

• Multi-GPU usage can be facilitated easily via event-paralelism (perfect scaling at ALICE).
• Two processes can also run two events on the same GPU (more memory needed, 10% speedup)

• If there is no single hotspot, many subprograms must be ported to GPU for reasonable speedup.
• Some client-server offload approach can be used to run various problems in parallel.

• If DMA transfer and CPU pre-/postprocessing is involved, a pipeline should be used.

• A common source code for CPU and GPU simplifies the development significantly.

• Expect a speedup of around 3 for GPU versus full processor.

• Employ an algorithm that allows parallelization, and do not run into a memory wall.
• For instance, 100 MB map of inhomogeneous magnetic field memory access will dominate everything.

	Overview of ALICE GPU computing and optimization strategies for GPU based LHC event filtering applications
	Introduction
	Introduction
	Introduction
	Why GPUs
	Why GPUs
	Introduction
	What Performance can we expect from GPUs
	Comparing CPU / GPU Performance
	Comparing CPU / GPU Performance
	GPU Expectations
	ALICE Overview
	Overview of ALICE HLT Reconstruction
	ALICE HLT Components
	ALICE HLT Reconstruction Sumary
	Tracking Algorithm
	Tracking at ALICE
	Tracking at ALICE
	Tracking Algorithm
	Tracking Algorithm
	Tracking Algorithm
	Tracking Algorithm
	Illustration of splitting in sectors
	Structure of HLT TPC Tracking
	GPU Tracking
	Performance
	Optimizations (Performance)
	Optimizations (Performance)
	Common tracker source code
	GPU Tracker Performance
	Results
	Performance on new GPUs
	Consistency of Tracking Results
	Consistency of Tracking Results
	Consistency of Tracking Results
	Summary (ALICE Tracking)
	Strategies for GPU optimization
	A Brief Look at Other experiments
	ATLAS – Client-Server-Architecture
	ATLAS – Data Preparation Results
	CMS – GPU Implementation
	LHCb – GPU Manager Offload Tool
	Analysis
	Summary (Strategy Ideas)

