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Introduction 

Moore‘s Law: 
Manufacturing 
size, frequency,  
and performance  
grow exponentially. 
 
Frequency began 
to stagnate  2003. 
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Introduction 

Moore‘s Law: 
Manufacturing 
size, frequency,  
and performance  
grow exponentially. 
 
Frequency began 
to stagnate  2003. 
 
GPUs are faster 
than CPUs. 
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Why GPUs 

GPUs use their silicon for ALUs 
CPUs use their silicon mainly for caches, branch prediction, etc. 

Intel Nehalem NVIDIA Kepler 
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Why GPUs 

CPUs are designed for fast execution of serial programs. 
• Clocks have reached a physical limit. 
Vendors use parallelization to increase performance. 

GPUs are designed for parallel execution in the first 
place. 

• The „only“ limit for GPU performance is heat dissipation. 
• GPU clocks are usually lower than they could be. 

– This saves power 
– Hence more hardware can be powered in parallel 
 Better overall performance 
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Introduction 

NVIDIA GTX280 GPU 



12.01.2016 



8 12.01.2016 

Comparing CPU / GPU Performance 

• The compute performance alone is no reasonable metric! 
− The GPU is the faster chip – by construction 

 
• We consider the following: 

 
 
 
 

• Most of our applications reach about 70% or more in this metric. 
• There are exclusions: 
− PCI Express can limit the performance (track merger, encoding with small n / k). 
− CPU Compilers are better and allow more flexible core (JIT-compiled encoding). 
− CPU caches can better hide memory latencies (Electron Microscopy). 
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Comparing CPU / GPU Performance 

• Overview 
of speedup 
in several 
applications: 
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GPU Expectations 

• Many problems can be ported to GPUs efficiently. 
• Some problems suffer inherent bottlenecks, when brought to GPUs: 

- PCI Express Bandwidth 
- Compiler Inefficiencies 

• Often easy to spot 
- Allows for easy plausibility checks whether GPU adaptation is 

possible. 
• Reasonable, very rough speedup expectation: 

 about factor 3 per GPU 
• Claims of larger speedup (factor 10 and above) are often 

comparisons to old / unoptimized / single-core CPU software. 
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Overview of ALICE HLT Reconstruction 

• Based on the online reconstruction, the next feature of the HLT will be online calibration. 
− Reconstructed data is required to generate the calibration. 
− Calibration objects fed back in processing chain and used for reconstruction. 
− TPC calibration stable over several minutes  Short time at the beginning needed to generate first calibration. 

TPC Link 1 TPC Clus-
ter Finder GPU TPC Track 

Reconstruction 
TPC Link 2 TPC Clus-

ter Finder 

ITS Link 1 
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Reconstruction 

Output 
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Output 
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Event 
Trigger 

Custom 
Source 1 

Custom 
Source 2 

Event 
Building 

Calibration 

In this example, custom source 1 
provides sensor data such as temperature 
and pressure to the calibration component 

on a per-event level. 

Sensor 
Data 

For reproducibility, we store which 
calibration object we used for every event. 

Zero Message Queue (Zero-MQ) 
Asynchronous Side Channel 

Many instances of this building block, at least one per HLT compute node. 
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ALICE HLT Components 

• CPU utilization per compute node – at ca. 1kHz Pb-Pb Min-Bias: 
• TPC Cluster Finder   FPGA 
• TPC Compression:   4 CPU cores 
• TPC Cluster Transformation:  1 CPU core 
• TPC Track Finder:   2 CPU cores + GPU – Alternatively: 20 CPU cores 
• TPC Track Fit:   1 CPU core 
• VZERO:   < 1 CPU core 
• ZDC:    < 1 CPU core 
• EMCAL RECO:   7 CPU cores 
• ITS Cluster Finder:   1-2 CPU cores 
• ITS SPD Vertexer / Standalone Tracker: 1 CPU core 
• TPC prolongation to ITS:  3 CPU cores 
• ESD / Flat-ESD Creation:  3 + 2 CPU cores 
• HLT QA:   < 1 CPU core 
• Luminuous Region:   < 1 CPU core 
• Trigger and Readout List creation: < 1 CPU core 
• TPC Calibration (140 Hz asynchronously): 6 CPU cores 
• Framework:   2 CPU cores  (Total: 34 cores – virtual HT cores) 

 
 

 



14 12.01.2016 

ALICE HLT Reconstruction Sumary 

• Significant processing requirements comes from: 
• TPC cluster finding: Handled by FPGA 
• TPC Compression: 12% (CPU algorithm being improved) 
• EMCAL: 21% (New software, not fully optimized yet) 
• ESD Creation: 9% (No speedup possible due to root files  Flat ESD without root) 
• ITS Tracking: 9% (Speedup possible, perhaps combined TPC+ITS GPU tracking) 
• TPC Calibration: 21% (Complex and extensive offline code, speedup possible, 

GPU adaptation unlikely) 
 

• TPC Tracking: 38% - Single processing hotspot 
 TPC tracking ported to GPU 
 

• With RCU2: Higher rate, more out-of-bunch pile-up: fraction of TPC tracking in 
total workload will increase. 
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Tracking at ALICE 

ALICE events: 

TPC Hits in heavy ion collision. 
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Tracking at ALICE 

ALICE events: 

TPC tracks in heavy ion collision. 
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Tracking Algorithm 

• TPC Volume is split in 36 sectors. 
− The tracker processes each sector individually. 
− Increases data locality, reduce network bandwidth, but reduces parallelism. 
− Each sector has 160 read out rows in radial direction. 
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Tracking Algorithm 

• TPC Volume is split in 36 sectors. 
− The tracker processes each sector individually. 
− Increases data locality, reduce network bandwidth, but reduces parallelism. 
− Each sector has 160 read out rows in radial direction. 

 
• 1. Phase: Sektor-Tracking (within a sector) 

− Heuristic, combinatorial search for track seeds using a 
Cellular Automaton. 
 A) Looks for three hots composing a straight line (link). 
 B) Concatenates links. 
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Tracking Algorithm 

• TPC Volume is split in 36 sectors. 
− The tracker processes each sector individually. 
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• 1. Phase: Sektor-Tracking (within a sector) 

− Heuristic, combinatorial search for track seeds using a 
Cellular Automaton. 
 A) Looks for three hots composing a straight line (link). 
 B) Concatenates links. 
 

− Fit of track parameters, extrapolation of track, and search for additional 
clusters using the Kalman Filter. 
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Tracking Algorithm 

• TPC Volume is split in 36 sectors. 
− The tracker processes each sector individually. 
− Increases data locality, reduce network bandwidth, but reduces parallelism. 
− Each sector has 160 read out rows in radial direction. 

 
• 1. Phase: Sektor-Tracking (within a sector) 

− Heuristic, combinatorial search for track seeds using a 
Cellular Automaton. 
 A) Looks for three hots composing a straight line (link). 
 B) Concatenates links. 
 

− Fit of track parameters, extrapolation of track, and search for additional 
clusters using the Kalman Filter. 
 

• 2. Phase: Track-Merger  
− Combines the track segments found in the individual sectors. 
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Illustration of splitting in sectors 

Sectors of ALICE TPC: 
 
 
 
 
 
 
 
 
 
 
Sector-local seeding can lead to 
some inefficiencies at sector borders. 
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Structure of HLT TPC Tracking 

Tracking split in 4 main (abstract) steps. 
• Each step is internally split in technical substeps. 
• Phase 1 (Steps 1 and 2) on GPU, Phase 2 (Steps 3 and 4) and CPU! 

 # Task How Locality Description Time Device 
1 Seeding Cellular 

Automaton 
Very Local (hit 
and adjacent 

hits) 

Find short track candidates of 3 to about 10 
clusters. 

Ca 30% GPU 
 or CPU 

2 Track 
following 

Kalman Filter 
(simplified) 

Sector-local Fit parameters to candidate, find full track 
segment in one sector via track following with 
simplified Kalman filter (e.g. constant B-field, 
y and x uncorrelated, …) 

Ca 60% 

3 Track 
Merging 

Combinatorics / 
Mathematics 

Global Merge track segments within a sector and 
between sectors 

Ca 2% CPU only 

4 Track Fit Kalman Filter 
(full) 

Global Full track fit with full Kalman filter (polynomial 
approximation of B-field) 

Ca 8% 
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GPU Tracking 

Parallel Track Construction 

Current Row 

Tracks are independent and can be processed simultaneously 
Because of Data Locality the Tracks are processed for a common Row 
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Optimizations (Performance) 

• Separation of event in sectors enables the use of a pipeline Pipeline: 
− Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel. 

 
 
 
 

 
 
 



27 12.01.2016 

Optimizations (Performance) 

• Separation of event in sectors enables the use of a pipeline Pipeline: 
− Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel. 

 
 
 
 

 
 

• Problem: tracks are differently long. Through dynamic scheduling, GPU can be 
fully used. 

 
• Black   : Idle 
• Blue     : Track Fit 
• Green  : Track Extrapolation 
 

No dnymic scheduling With dynamic scheduling 
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• CPU and GPU tracker (in CUDA) share common source files. 
• Specialist wrappers for CPU and GPU exist, that include these common files. 

 
 
 
 
 
 
 
 
 

 
 Same source code for CPU and GPU version 
− The macros are used for API-specific keywords only. 
− The fraction of common source code is above 90%. 

 

common.cpp: 
__DECL FitTrack(int n) { 
…. 
} 

cpu_wrapper.cpp: 
#define __DECL void 
#include ``common.cpp`` 
 
void FitTracks() { 
  for (int i = 0;i < nTr;i++) { 
    FitTrack(n); 
  } 
} 

cuda_wrapper.cpp: 
#define __DECL __device void 
#include ``common.cpp`` 
 
__global void FitTracksGPU() { 
  FitTrack(threadIdx.x); 
} 
 
void FitTracks() { 
  FitTracksGPU<<<nTr>>>(); 
} 

Common tracker source code 
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GPU Tracker Performance 

Performance: GTX580 GPU almost three times as fast as 6-core processor. 
 
Compute-intense 
substeps show 
speedup on GPU. 
 
Some irrelevant 
substeps  run on GPU 
but without speedup. 
 
Still necessary to 
avoid data movement. 
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Results 

GPU performance 
independent from CPU. 

Tracking times scales linearly 
with input data size. 

Approx. 150 times faster than offline tracking. 
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• Important new GPU feature relevant for GPU tracker: 
• GPUs can run multiple different kernels in parallel. 
• This can improve GPU utilization. Preliminary tests show 15% improvement already. 

 
• GPU tracking time on central PbPb event. 

• NVIDIA GTX480 (Fermi) 448 shader, 1215 MHz  174 ms   (used in the old HLT) 
• NVIDIA GTX780 (Kepler) 2304 shader, 863 MHz  155 ms 
• NVIDIA Titan (Kepler) 2688 shader, 837 MHz  146 ms 
• AMD S9000 (Tahiti) 1792 shader, 900 MHz 145 ms   (used in the new HLT) 
• NVIDIA GTX980 (Maxwell) 2048 shader, 1126 MHz 120 ms 

• With both NVIDIA and AMD as possible vendors, we are no longer vendor-locked! 
 

• New GPUs with more shaders not optimally used yet. We assume a speed benefit 
of up to 30% by further tuning the tracker for the new GPU chips. 
 

Performance on new GPUs 
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The first runs showed some inconsistencies in cluster to track assignment 
statistics, but not in physical observables. Three causes were identified: 

• Cluster to track assignment 
• Track Merger 
• Non-associative floating point arithmetic 

Consistency of Tracking Results 
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Consistency of Tracking Results 

• Cluster to track assignment 
• Problem: Cluster to track assignment was depending on the order of the 

tracks. 
– Each cluster was assigned to the longest possible track. Out of two 

tracks of the same length, the first one was chosen. 
– Concurrent GPU tracking processes the tracks in an undefined order. 

 
• Solution: Both the chi² and the track length are used as criteria. It is 

extremely unlikely that two tracks coincide in both values. 
 

• Similar problem in track merger, which depended on track order. 
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Consistency of Tracking Results 

• Non associative floating point arithmetic 
• Problem: Different compilers perform the arithmetic in different order (also on 

the CPU). 
 

• Solution: Cannot be fixed, but... 
– Slight variations during the extrapolations do not matter as long as the 

clusters stay the same. 
– Inconsistent clusters: 0,00024% 
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Summary (ALICE Tracking) 

• HLT Tracking 15 times faster than offline tracking. 
• With GPU additional speedup of 10 compared to CPU  Total speedup 150. 

 

• GPU and CPU results consistent and reproducible. 
 

• GPU Tracker runs on CUDA, OpenCL, OpenMP – one common shared source code. 
 

• Now: 180 compute nodes with GPUs in the HLT 
• First deployment: 2010 – 64 GPUs in LHC Run 1. 
• Since 2012 in 24/7 operation, no problems yet. 

 

• Cost savings compared to an approach with traditional CPUs: 
• About 500.000 US dollar during ALICE Run I. 
• Above 1.000.000 US dollar during Run II. 
• Mandatory for future experiments, e.g.. CBM (FAIR, GSI) with >1TB/s data rate. 
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Strategies for GPU optimization 

• Nearly all GPU programs I implemented use a pipeline and asynchronous processing: 
• Concurrent GPU processing, CPU processing, DMA transfer. 

 
• A shared common source code for CPU and GPU version improves 

• Verification 
• Debugging 
• Maintainability 

 
• Sometimes the algorithm can be changed slightly to neglect concurrency effects 

• Improves consistency and reproducibility 
 

• Every problem might require custom optimization: 
• Like track length variation in ALICE TPC 



12.01.2016 



• Client-server architecture allows GPU resources to be shared amongst multiple trigger instances 
Data transfer is done over shared memory segment 

• Also used as CUDA host buffer 

• Minimizes integration surface in trigger software - only POSIX required 

• Allows for GPU memory resources (e.g. hardware maps) to be shared 

ATLAS – Client-Server-Architecture 



Bytestream decoding and clustering show a 26x speed-up against single-threaded CPU 

ATLAS – Data Preparation Results 



CMS – GPU Implementation 
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Socket client-server tranmission 
Scheduler First-Come First-Served, 

gathers multiple events and ships 
them for concurrent processing 

Some goodies 
• Algorithm exceptions propagated to 

callers 
• Centralized profiling, logging 
• File input / output configurable 
• Outside framework execution possible 

 

LHCb – GPU Manager Offload Tool 



42 12.01.2016 

Analysis 

• Clustering and Tracking are dominant applications at LHC experiments. 
• ALICE has deployed FPGA based cluster finding and GPU based tracking. 
• ATLAS, CMS, LHCb are investigating solutions. 

 
• ALICE has isolated hotspot for GPU: TPC track finding 

• ALICE employs a custom solution only for tracking. 
 

• ATLAS does not have such an isolated hotspot, but many more software components that 
contribute equally. 
 

• ATLAS and LHCb hence use a slightly more general approach, with GPU Manager Offload 
Engine / Client-Server architecture. 

• This enables easier offloading of multiple different and smaller applications. 
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Summary (Strategy Ideas) 

• Find hotspot, port hotspot to GPU 
• If several hotspot problems are tightly coupled, bring them to GPU as one instance without transfers: 

• For instance, ALICE TPC track finding, track fit, ITS tracking. 
• Small intermediate steps can be run on GPU without optimization effort (no speedup but less transfers). 
• Try to optimize for CPU first, do not bring applications to GPU if not needed. 

 

• Multi-GPU usage can be facilitated easily via event-paralelism (perfect scaling at ALICE). 
• Two processes can also run two events on the same GPU (more memory needed, 10% speedup) 

 

• If there is no single hotspot, many subprograms must be ported to GPU for reasonable speedup. 
• Some client-server offload approach can be used to run various problems in parallel. 

 

• If DMA transfer and CPU pre-/postprocessing is involved, a pipeline should be used. 
 

• A common source code for CPU and GPU simplifies the development significantly. 
 

• Expect a speedup of around 3 for GPU versus full processor. 
 

• Employ an algorithm that allows parallelization, and do not run into a memory wall. 
• For instance, 100 MB map of inhomogeneous magnetic field  memory access will dominate everything. 
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