Update on CLICpix planar-sensor assembly simulations

- Simulation of the readout -

Magdalena Munker, Andreas Nürnberg

CLICdp Vertex-Meeting, 10.03.2016

Rheinische Friedrich-Wilhelms-Universität Bonn

The simulation in a nutshell

Digitalisation / implementation in the simulation

- Apply threshold
- Define saturation
- Define number of bits
- Equally spacing of bit states between threshold and saturation

3 parameters:

Threshold

Saturation

Number of bits

Digitalisation / CLICpix test-beam data

- Data recorded during test-beam period in August 2015 at SPS with CLICpix planar-sensors of 200 µm thickness
- 200 MHz clock, ToT-readout
- → Frequency = 200 MHz / (clock-division + 1)
- Scan of clock-division during data taking corresponds to shift of saturation and precision due to fixed number of 4 bits:

Digitalisation / comparison of CLICpix data to simulation

Need to convert the clock-division factor to an electron scale to compare clock-scan to simulation:

- Landau of cluster signal in units of Δb
- Select clock-division of 20 which does not saturate the signal
- Fit Landau ⊗ Gauss → MPV [Δb(clock-division=20)]

Digitalisation / comparison of CLICpix data to simulation

- Fit Landau \otimes Gauss \rightarrow MPV [Δ b(clock-division = 20)]
- Sensor thickness of 200 μ m \rightarrow MPV [Δ b(clock-division = 20)] = 16000 e⁻
- $\rightarrow \Delta b(clock-division = 20) [e^{-}] = 16000 e^{-} / MPV$
- → Fixed number of 4 bits: Saturation(clock-division = 20) [e⁻] = 2⁴ x Δb(clock-division = 20) [e⁻]_{p.5}

Digitalisation / comparison of CLICpix data to simulation

For arbitrary clock-division:

 $\Delta b(\text{clock-devision}) [e^-] = (16000 / \text{MPV}) \times (\text{clock-division} + 1) / (20 + 1)$

Saturation(cd) $[e^{-}] = 2^4 \times \Delta b(clock-division) [e^{-}]$

This can be used now to convert any clock-devision in saturation [e⁻] for the simulation

- → Charge sharing
- Neighbour pixels might be below threshold
- → Distortion of cluster-signal
- Need to avoid charge sharing

Avoid charge sharing by requiring cluster-size of 1 and cutting on sensor center

Select only hits in white box which have a cluster-size of 1

Landau \otimes Gauss fit / results for even columns

 $\Delta b(\text{clock-devision}) [e^-] = (16000 / \text{MPV}) \times (\text{clock-division} + 1) / (20+1)$ Saturation(cd) [e⁻] = 2⁴ × $\Delta b(\text{clock-division})$ [e⁻]

Cuts in the test-beam analysis

Why?:

Different response of odd and even columns in x-dimension because of known CLICpix issue:

- Crosstalk from discriminator output to preamplifier
- Different for even and odd columns because of pixel layout

How?:

Force cluster size in x-dimension to 1 & cut on sensor center:

- Reduce charge sharing between odd & even columns
- Study odd & even columns separately
- Study observables in y-dimension
- Show only results for even columns

Landau for different clock devisions

Good agreement!

Resolution versus clock division

- Single pixel cluster resolution always binary, independent from digitalisation
- Study 2-pixel cluster resolution for different clock divisions:

Resolution versus clock division

Expectation:

- Very small clock division → saturation of signal → resolution gets worse
- Very large clock division → loss of precision → resolution gets worse

Resolution versus clock division / even

But eta-correction corrects for non all linearities

p. 13

Resolution versus clock division / even

Do we need 4-bits or are less bits sufficient?

p. 14

Resolution versus number of bits / simulation

For the clock-devision and the sensor used in the test-beam 4 bits seem to be kind of optimal

Summary & outlook

Simulation of digitalisation implemented and validated:

- Good agreement with test-beam data from CLICpix planarsensor clock-scan for:
 - Landau distributions
 - Resolution
- Simulation helps to understand results

Simulation framework validated for:

- Different chips (TimepixI & CLICpix)
- Different sensor thicknesses
- Different incident angle
- Magnetic field
- Different thresholds
- Digitalisation

Framework finally fully validated

Can use the framework now to study performance of different designs

BACKUP

Effect of difference in even & odd columns

- Even (low charge) refers to nominal condition (without additional charge injected)
- Odd refers to additional injected charge
- This is just a change of the pulse form and leaves the parameter of Threshold & Saturation unchanged
- Calibrate digitalisation scale to even columns and inject charge before threshold application in simulation to compare to odd columns

My workflow for the simulation of tracking sensors

Simulation of particle signal in sensor

Fast parametric model of front end electronics, energy fluctuations and noise

• Start with fit to signal on readout strips

- Scan x with small step size, perform for each position:
- 1.) Landau smearing of sum of signal (energy fluctuations) (Use Landau distribution from GEANT4 simulation)
- 2.) Gauss smearing of single strip signal (electronic noise)
- 3.) Threshold application
- 4.) Digitalisation
 - Analog
 - Digital, adjust # of bits & saturation
 - Binary, just two bit-states (1 bit)

Position reconstruction

