



Mateus Vicente Mathieu Benoit

WG vertex meeting 10/03/2016



### **Overview**

- □ ACC $\mu$ RA<sup>TM</sup>100 flip-chip machine
  - Up/Down camera to align readout chip and sensor
  - Correct alignment by visual and manual control of the chip/sensor





2





### **Overview**

□ ACCµRA<sup>™</sup>100 flip-chip machine

### Up/Down camera to align readout chip and sensor

Correct alignment by visual and manual control of the chip/sensor









### **Overview**

- □ ACCµRA<sup>™</sup>100 flip-chip machine
  - Up/Down camera to align readout chip and sensor
  - Correct alignment by visual and manual control of the chip/sensor









### CLICpix + Substrate flip-chip

- □ Flip-chip(ing) CLICpix chip
  - 25 um pixel pitch









## CLICpix + Substrate flip-chip

- Pixel pattern recognition
  - Using OpenCV framewrok









JERN



## clc

## CLICpix + Substrate flip-chip

- Pixel pattern recognition
  - Using OpenCV framewrok
- Determine (X,Y) offset between chip and substrate



# **Enhance pixel recognition**

picture manipulation

#### Picture histogram





8

mvicente@cern.ch

10/03/16



CERN

## **Enhance pixel recognition**

picture contrast, brightness, etc...



Using professional software 









mvicente@cern.ch

10/03/16

## **Enhance pixel recognition PixelShop - Before**



CERN

Substrate  $\mathbf{O}$ 🔎 💾 💕 Η 🚽 Θ Ω 0=0=0-0-0=0=0=0=0=0=0=0=0 ो ─ **─ िव**िव ─ िव ─ िवििवििव ─ ─ ≥<mark>⊜</mark>⊈⊜⊇⊜⊇⊜⊇⊜⊇⊜⊇⊜⊇⊜⊇⊜⊇ Images (5/6) Images (5/6) Contrast (100/200) Contrast (129/200) Brightness (000/255) Brightness (020/255) Clarity (000/100) Clarity (020/100) Threshold (02/50) Threshold (15/50)



10

mvicente@cern.ch 10/03/16

## **Enhance pixel recognition** PixelShop - After



Η 🚽  $\mathbf{O}$ Θ H 🚽  $\mathbf{O}$ Θ  $) \cap O_0 \cap$ o Oo Oo Oo Oo Oo Oo Oo Oo Oo Images (5/6) Images (5/6) Contrast (177/200) Contrast (129/200) Brightness (137/255) Brightness (020/255) Clarity (000/100) Clarity (020/100) Threshold (05/50) Threshold (15/50)



CERN

mvicente@cern.ch

10/03/16

## **Enhance pixel recognition**

PixelShop - After

- 12
- Alignment (X,Y) offset
  - (X,Y)<sub>Substrate</sub> (X,Y)<sub>Chip</sub>
  - ~80% more pixels





### Conclusions

### and next steps

- Pixel matrix recognized
  - almost with 100% of efficiency finding pixels in the picture
- (NEXT) Automatize contrast/brightness/threshold manipulation
  - Loop over the parameters maximizing the contours found
    - Implement a region of interest (ROI) over the pixel matrix excluding other contours
- (NEXT) Manually click pixel edges to create its contour
  - Perform a template matching over the picture



mvicente@cern.ch

10/03/16



13





### **Template matching** example











14

