

CMOS applications for charged particle detection (nuclear/mass spectroscopy/medical)

Scope of this talk

- I was asked to give an overview/a sample of potential applications for CMOS sensors beyond particle physics focussing on detection of charged particles
- Disclaimer: I am not an expert for most of the applications discussed
 - take my slides with a grain of salt
 - Iet me know if you spot any obvious mistakes
- There have already been dedicated particle sensors (often designated as monolithic active pixel sensors or "MAPS") for a rather long time, but
 - these were usually relying on diffusion as means of charge collection
 - slow
 - fails already for comparatively low amounts of trapping from (bulk) radiation damage
- The same is (mostly) true for classical CMOS imaging sensors which enabled to have cameras in virtually all everyday gadgets like mobile phones
- I will try to point out potential applications of drift-based CMOS sensors

Charged particle detection in CMOS

- Main idea: electrons (or holes) survive long enough to reach collection electrodes
 - use high-grade silicon layer to accomplish \rightarrow epi
 - rely on diffusion \rightarrow slow, not rad-hard
- use built-in voltage at pn-junction to collect charge, use small capacitance of electrode to reach sufficient voltage levels
- classical readout scheme: 3/4/5 transistor, requires reset, does usually not account for leakage current, rolling shutter/sequential readout (slow)

Charged particle detection in CMOS

- Advantages of MAPS sensors
 - small pixel sizes possible
 - readout electronics mostly integrated in sensor
 - cost-efficient production
- Disadvantages of MAPS sensors
 - not radiation-tolerant
 - comparatively bad timing
 - depending on readout scheme: slow, inevitable dead-time, no self-trigger

"Classical MAPS" \rightarrow HV/HR-CMOS

- Apply bias voltage to bulk \rightarrow rely on drift instead of diffusion
- Avoid charge collection on parasitic wells by shielding them inside a deep n-well
- Take care of inter-pixel isolation after irradiation by suitable techniques
- Often a rather classical charge-sensitive amplifier with leakage current compensation is used at the expense of larger pixels
- New applications opening up?

Nuclear Physics Applications

- Classical application: Particle tracking
 - not particle physics? \rightarrow Similar, but still different
 - often large multiplicities
 - particle energies
 - Particle/Hadron/Nuclear physics?
- Examples:
 - STAR
 - Panda Luminosity Monitor
- STAR (→ Petra Riedler's talk)
 - AMS 350nm opto process (C350) ionizing particle

Lancaster 🌌

Nuclear Physics Applications

STAR

- rather moderate radiation environment
- material budget rather low
- timing generous

PXL Detector Design Parameters

DCA Pointing resolution	(I0 ⊕ 24 GeV/p·c) μm		
Layers	Layer I at 2.8 cm radius		
	Layer 2 at 8 cm radius		
Pixel size	20.7 μm X 20.7 μm		
Hit resolution	3.7 μm (6 μm geometric)		
Position stability	5 μm rms (20 μm envelope)		
Material budget first layer	$X/X_0 = 0.39\%$ (Al conductor cable)		
Number of pixels	356 M		
Integration time (affects pileup)	185.6 μs		
Radiation environment	20 to 90 kRad / year		
	2*10 ¹¹ to 10 ¹² IMeV n eq/cm ²		
Rapid detector replacement	< I day		

356 M pixels on ~0.16 m^2 of Silicon

Nuclear Physics Applications

Panda Luminosity Monitor @ FAIR (Darmstadt, Germany)

GEMs

Disc Dirc

- ongoing site construction enlarging GSI
- Panda being a versatile detector for proton-antiproton collisions
 - hadron spectroscopy
 - nucleon structure
 - hadrons in matter

Target Pipe

hypernuclei

Muon Detector /

Magnet Yoke

Tobias Weber

Solenoid

TOF/DIRC

STT

EMC

Beam Pipe

Lancaster 553 University

Nuclear Physics Applications

- Panda Tracking system
 - Several gas-based detectors
 - Double-sided silicon strips for the Micro-Vertex-Detector
 - radiation hardness for hole collection already marginal (CMOS too late)?
 - Luminosity Monitor expected to use HV-MAPS

Nuclear Physics Applications

- Panda Tracking system
 - basic idea: mount HV-MAPS chips to CVD diamond substrate to provide cooling
 - very thin/low X0 configuration possible
 - HV-CMOS sensors tolerate running at rather high temperatures and with significant Delta-T across the sensor

Further "Nuclear" Applications

Lancaster University

- Most nuclear physics applications are based on detection/spectroscopy of gamma rays
 not ideal
 - But Particle ID is possible
 - Potential instrumentation for "nuclear" things:
 - contamination monitors: large areas, currently ionisation chambers or scintillators for beta (and alpha) detection
 - tritium detection: low-energy beta (14 keV), short range

Mass spectroscopy

- Two main methods: magnetic analysis or ion time-of-fight
- Up to now other detector types in use, e.g. Multi Channel Plates for electron amplification followed by a suitable sensor, e.g. a pixel readout chip
- PImMS chip designed for detecting light from MCP/Phosphor layer
 - TOF-compatible
- Direct ion detection possible and could be advantageous, but ion range in detector limited, beware of dead surface layers

Electron Microscopy

Imaging in Transmission Electron Microscopy

Electron Microscopy

Detector R&D Drivers: Radiation Hardness

- Imaging mode: O(1-10 Mrad) ionising dose expected for typical yearly usage (low dose conditions)
- **Diffraction mode**: very high doses localized in bright spots

Electron Microscopy

Detector R&D Drivers: Multiple Scattering

- Energies of interest to TEM: 80-400 keV
- Electron range R [µm] ~ E [keV]
- Energy loss dE/dx ∝ 1/E
- Need for a thin sensitive layer to minimize scattering contribution to Point Spread Function

Devis Contarato

Electron Microscopy

Three Generations of CMOS APS for TEM Imaging

400 fps \rightarrow 400 Mpixels/s Imagers for the TEAM Project at NCEM

2nd Generation (2009-2011)

0.18 μm CMOS 5 μm pixels 16 MPixels 400 fps → 6400 Mpixels/s Commercialized by Gatan, Inc.

Devis Contarato

http://www.gatan.com/K2/

3rd Generation (2011 – in progress)

65 nm CMOS 2.5 μm pixels Prototype sensor under evaluation

Electron Microscopy

3rd Generation Development in 65 nm CMOS

- Commercial 65 nm CMOS mixed-signal/logic process (not imaging process)
- Submission shared with BES and HEP projects (2011)
- CMOS APS: 400×400 pixels, 2.5 μm pitch, 1×1 mm² active area
- Implement 4 sectors with various pixel layouts

	Sector 1	Sector 2	Sector 3	Sector 4
Diode layout	TEAM-like	TEAM-like	TEAM-like	New "pseudo- pinned"
Gate Leakage Compensation	Yes	Yes	Yes	No
MOSFET layout	Enclosed Layout	Standard	Standard	Standard
MOSFET V _{th}	Standard (0.3 V)	Standard (0.3 V)	Low (0.2 V)	Low (0.2 V)

Devis Contarato

Medical applications: pCT

- Proton Computed Tomography is a CT method specifically suitable for proton/hadron therapy
 - standard CT measures electron densities, not mass densities required for precise hadron treatment planning
- Measure the scattering along each track followed by an energy measurement

R. P. Johnson et al.

E. Clements

Lancaster Star University

Medical applications: pCT

- Tracking sensors up to now
 - Silicon strip sensors
 - Fibre Trackers
 - GEMs
- CMOS detectors might be interesting candidates, in particular thanks to being able to being operated thin and giving both coordinates at the same time

Medical applications: particle therapy

- Particle Cancer Therapy requires stringent QA
 - regular (daily) control measurements of beam steering and energy calibrations
 - beam monitoring during treatment including feedback to beam steering
- Up to now done with stack of ionisation chambers
 - not individual particles, but mean current is measured
 - material budget important

Medical applications: particle therapy

- CMOS detectors very good candidates for this application
 - radiation hard (1e9 protons/s with 1mm beam diameter)
 - high particle rates (ditto)
 - good resolution (currently: 500 µm beam mean)
 - fast readout (currently: 250 μm, is limiting scan speed)
 - low material budget (currently: 500 μ m water equivalent \rightarrow thinned devices)
 - even individual particle tracking might be an option
- Mobile detectors could also be applied to skin over entry ports or even body cavities
 - direct measurement of particle tracks, comparison to treatment planning

Conclusions

- CMOS sensors applicable to charged particle detection also outside of HEP tracker applications
- Many requirements rather relaxed compared to LHC environments
 - recycling of architechtures generally possible
 - potential issues:
 - high NRE costs for reticule-sized detectors
 - design towards versatility?
 - Large areas required, efficiency gaps sometimes an issue
 - very thin sensors with overlap?
 - stitching?
- Major issues:
 - (lack of) chip designers in several communities
 - comparatively high initial investment (both monetary and know-how wise) compared to established technologies