

CMOS Hybrid pixel detectors

Richard Bates & Dima Maneuski

Contents

- Motivation for hybrid CMOS
- Assembly

CMOS designs

Tomasz Hemperek, ACES, 8th to 10th March 2016

- **Depleted Monolithic Active Pixel Sensor**
 - HR-material (charge collection by drift)
 - Fully depleted MAPS (DMAPS)
- Hybrid Pixels with Smart Diodes
 - HR or HV-CMOS as a sensor (8")
 - Standard FE chip
 - CCPD (HVCMOS) on FE-I4
- CMOS Active Sensors + Digital R/O chip
 - HR or HV-CMOS sensor + CSA (+Discriminator)
 - Dedicated "digital only" FE chip
- Passive CMOS Sensor + R/O chip
 - HR or HV-CMOS sensor
 - Dedicated FE chip
 - Low cost C4 bumping and flip-chip

Diode + Analogue + Digital

Diode + Analogue

Standard FE (A + D)

Diode + Analogue

Digital FE

Diode

Hybrid CMOS Motivation over planar

- Reduced material
 - CMOS active area is thin
- Sensor Cost
 - CMOS sensors cheap compared to 6-inch FZ planar
- Flip-chip cost
 - Capacitive coupling reduces complexity of interconnect
- Lower Analogue power
 - Capacitive load of pixel reduced
- Less cooling requirements
 - Post-irradiation operation at higher temperatures

Why not Monolithic?

- Separation of analogue from digital circuitry
 - Better analogue performance
- Build flexibility
 - Smaller sensor pixels that ROIC pixels
 - Use signal size to encode position
 - Large area CMOS with small ROIC footprint
 - The strip sensor shown before but with smaller pixels
- Electronics flexibility
 - Full ROIC CMOS in smallest node
 - Maximum functionality of digital side
- Higher fill factor and more uniform response

Process options

Electronics inside charge collection well

- Collection node with large fill factor -> rad. hard
- Large sensor capacitance (DNW/PW junction) -> X-talk, noise & speed (power) penalties
- Full CMOS with isolation between NW and DNW

Electronics outside collection well

- Very small sensor capacitance -> lowest power
- Potentially less rad. hard
 - longer drift lengths
- Full CMOS with additional DPW

Larger capacitance makes it more difficult for the readout

Assembly

- Simply glue the two together
- Control the glue thickness
- Direct bonding
 - Wafer-to-wafer copper-to-copper bond
- The DC connection for power

Glue CMOS sensor to ROIC

N. Alipour Tehrani, VCI 15th to 19th Feb 2016, Vienna, CLICdp collaboration

- Simple glue layer between ROIC and CMOS sensor
- Use a flip-chip machine to align and flip-chip the die
- Output of the CMOS is capacitively coupled to the ROIC
 - No expensive bump bonds
 - Still needs die to die flip-chip
- Control can be capacitively coupled
- Still require DC power connections

CMOS for CLICpix

- CCPDv3
- Deep n-well collects charge
 - Shields electronics from substrate -> prevents charge loss to electronics well
- 180nm HV-CMOS process
- Two-stage amplifier in each pixel -> T_{peak} = 120 ns

Results – Cap coupled CLICpix

- Test-beam at CERN SPS (EUDET/AIDA telescope)
- High Detection efficiency (even without Sensor bias)
- Non-uniformity of glue thickness visible in variation of the measured mean charge (ToT) across the matrix
- ~ 6 μm single-point resolution

- Demonstrated AC coupled HV-CMOS smart sensor
- CLICpix2 readout and CMOS sensors under development

SU8 pillars to control glue thickness

A. Gaudiello, Trento Workshop, 22nd to 24th Feb 2016, INFN

Better control of glue thickness over large area device

Basic process

Spin SU-8 photoresist Pattern pillars by mask

Deposition of SU8 photoresist by spinning

- Single chip assemblies
 - Glue and SU8 spacer
 - Pillar height ~ 5 μm
 - Device thickness Stdev = 0.6 μm

Wafer-to-wafer bond

 Preferred solution for back-illuminated visual CMOS in the modern world

Sony http://www.sony.net/SonyInfo/News/Press.201201/12-009E ST L. Benaissa et al., "Next Generation Image Sensor via Direct Hybrid Bonding", EPTC proceeding, 2015 10/03/16 R. Bates

Direct copper to copper bonding

- Wafer level process
- Room temperature process
 - Moderate post bond anneal (200-400C)

Process

- Copper deposition and oxide growth
 - Copper for metallic conductive bonds
 - No glue or solder required
- Chemical mechanical polish of surfaces
 - Surface roughness RMS ~ 0.5 nm
 - Wet clean / Plasma clean
 - Ion beam surface activation
- Wafer alignment
 - x/y better than 400 nm
- Contact wafer and bond forms
- Anneal to recrystallize copper over bond
 - Increase bond strength removes bond interface
- Treat bonded device as single wafer
 - Thin CMOS to 10 μm thickness
 - Add TSV last as required

Copper direct bonding

Hybrid bonding interface

> Cu-Cu bond. Cu crystal growth removing bonding interface

Image Signal Processor (ISP)

R. Taïbi et al., "Full characterization of Cu/Cu direct bonding for 3D integration", EPTC proceeding, 2010, pp. 219-225

SAM image – improving wafer bond quality: white – void/ black -bond

8-inch FZ with pixel ROICs direct bonded

Ray Yarema, CMOS workshop, Sept 15th to 17th 2014, Bonn, FNAL

Bonded with Ziptronix Ni-DBI (Oxide-Oxide Fusion bonding)

VIPIC

VIPIC is 34 μm thick and has bonding pads on its back to connect to PCB

The DC power connection

- Power via the back of the CMOS/ROIC
 - Through Silicon Via, TSV
 - TSV last for ROIC Aspect ratio of 3:1
 - Via middle possible for CMOS 2 μm vias possible

Electrical DC connection between die. TSV on one side

The DC power connection

- Power via the back of the CMOS/ROIC
 - Through Silicon Via, TSV
 - TSV last for ROIC Aspect ratio of 3:1
 - Via middle possible for CMOS 2 μm vias possible

The DC power connection

- Power from the front of the CMOS/ROIC
 - Traces on one chip powers both chips
 - Conductive glue used for DC connection for power only
 рсв

