

Higgs Coupling 2016

This talk: MSSM high mass Higgses

JHEP06(2015)168 A. Djouadi, et al

$H/A \rightarrow tt decay @8TeV$

Analysis builds on JHEP **08** (2015) 148 tt semileptonic decays

mass 400-800 GeV variable width, 2HDM(II) Interference with SM tt background considered m_h =125 GeV. sin(β-α) =1→SM coupling

• A/H top coupling ~1/tan(β): search most sensitive to low tan(β)

Interference: generator modified to remove the SM tt⁻ matrix element \rightarrow S + I contribution on event-by-event basis.

H/A→ tt decay @8TeV

Event selection:

- One high p_T electron or muon;
- MET> 20 GeV, MET+m_{TW}> 60 GeV
- ≥4 high p⊤ jets, ≥1 b jet (70%eff)

Decay product assignment via χ^2 kin. fit **6 categories:**

(2 lepton types) x (3 b-tagging categories)1 b-tag for each top or only to one top quark.

main backgrounds: ttbar, W-jets and multi-jet.

- W+jets SF obtained from data (comparing W boson charge asymmetry with Alpgen) in CR with same selection as SR apart b-tag requirement
- multi-jets normalisation and shape from data with matrix method.

No excess → exclusion limits

(d) $m_A = 750$ GeV, $\tan \beta = 0.64$

H/A→ tt decay @8TeV

These results show that with more data we will be sensitive to the interesting parameter space values (in particular in the low tan(β) and high mass regions).

$A/H \rightarrow \tau^+\tau^-$

13.3 fb⁻¹ @13 TeV coupling to τ and b enhanced at large tan(β) wrt to SM. Two production modes: ggF and b associated production.

Categories:

[lep-had , had-had] ⊗[b-tagged, b-veto] +
 lep-had high E^T_{miss} (>150 GeV)

dominant @ large tan(β),

	lep had				had had	
	b-veto	b-tag	high MET		b-veto	b-tag
trigger	1 lep > 20-140 GeV	1 lep >20-140 GeV	MET>70-100 GeV	tau trigger p⊤>80 (125 GeV)	~	~
1 PT>30 GeV lepton	~	~	~	1 medium/1 loose tau	p⊤>110/65 GeV (140/65)	pT>110/65Ge V
1 pT>25 GeV tau (medium)	~	 	 	lepton veto	<i>v</i>	v
Е ^т _{miss} >150 (т _е т _{had}) Ip̃+ḖTmissl>150GeV(т _μ т _{had})			~			
M⊤(e/µ, E [⊤] _{miss})<40 GeV	~	 	 			
Δф(т, е/μ) > 2.4	~	~	~	Δф(т1, т2) > 2.7	~	~
≥1 b-tag (77%)		~		≥1 b-tag (70%)		~
b-veto (0-btag)	~				~	

All have opposite charge requirement+ Z mass veto for $\tau_e \tau_{had}$ channel

$A/H \rightarrow \tau + \tau - (lep-had)$

Main backgrounds:

jets misidentified as leptons and τ -> Data Driven

- Fake Factors (FF) for tt and W+jets from W+jets/top CR (obtained reversing $m_T(I, E^{miss})$ requirement)
- Fake Factor for multi-jet (MJ) obtained from QCD CR (e/μ isolation inverted)

 $FF_{comb} = FF_{MJ} \times rQCD + FF_{W} \times (1-rQCD)$

FF are then applied to events passing anti- τ_{had} ID selection

 $A/H \rightarrow \tau + \tau - (had-had)$

High MET

Main Backgrounds

- Multi-jet fake taus Data Driven. FF obtained from Multi-jet CR.
 - CR Lead τ anti-id (medium)
 - applied to data events in a CR that has sublead τ anti-ID tau(loose).
- W+jets and tt bkg are also evaluated applying to MC a fake rate from CR.

-W+jets: 0 b-tag+1 μ

- tt: \geq 1 b-tag+ 1 μ

$A/H \rightarrow T^{+}T^{-}$

$A \rightarrow Zh \rightarrow (II \text{ or } vv)bb$

Search focuses on CP-odd A Narrow Width @13 TeV, 3.2 fb⁻¹

 $(h \rightarrow bb SM BR and A width are adapted to 2HDM when needed)$

Variable	$Low-p_T^Z$	High- $p_{\rm T}^Z$					
Common selection							
$p_{\rm T}^Z$ [GeV]	<500	≥ 500					
N _{b-tag jet}	1,2	1,2					
N _{small-R jet}	≥2	≥0					
Nlarge-R jet	≥0	≥1					
m_{dijet} or m_{jet} [GeV]	110–140	75–145					
0-lepton selec	tion						
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	-					
$\sum_{i=1}^{N_{\text{jet}}=3(2)} p_{\text{T}}^{\text{jet}_i} \text{ [GeV]}$	> 150 (120) ^(*)	-					
$p_{\rm T}^{\rm miss}$ [GeV]	> 30	> 30					
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< \pi/2$	$< \pi/2$					
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 2\pi/3$	$> 2\pi/3$					
$\min[\Delta \phi(\vec{E}_{T}^{miss}, small-R jet)]$	$> \pi/9^{(*)}$	$> \pi/9^{(*)}$					
$\Delta \phi(j,j)$	$< 7\pi/9$	-					
Number of hadronic taus	0	0					
Number of b-tag track-jets not	_	0					
associated to the leading large- R jet	_	0					
2-lepton selection							
m_{ee} [GeV]	70–110	70–110					
$m_{\mu\mu}$ [GeV]	70–110	55-125					
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [\sqrt{{ m GeV}}]$	< 3.5	-					

Events are categorized:

- -0- or 2-leptons (MET or single lepton trigger,)
- $-p_{T^{z}}$ low/high(<500 GeV), small/fat R-jets used -number of *b*-tagged jets (1-tag or 2-tag).

mjj compatible with mh(125 GeV).

Charged Higgs

more details in parallel talk by A. Ferrari

tanβ

<u> $H^{\pm} \rightarrow \tau v$: W from top and τ decaying hadronically</u> Selection: E_{Tmiss} > 150 GeV, 1 τ_{had} and \geq 3 jets (\geq 1 b-tag)

Backgrounds:

- W \rightarrow Tv,tt true T_{had.} from MC.
- T_{had} fakes, mainly multi-jet: from data.

<u>tbH^{±(} \rightarrow tb): tt semi-leptonic, similar to tth(bb)</u>

Selection: I lepton \geq 4jets (\geq 2 b-tagged)

Background:

• tt+light (NNLO prediction), $tt+\geq |c, tt+\geq |b|$ free in fit.

tt+HF final states interpretation

Designed for prod. of 2 vector like top quarks TT \rightarrow HtHt, HtZt and HtWb, or 4t final state. <u>Reinterpreted in Higgs sector</u>:

- $bbH/A(\rightarrow tt)$ or $ttH/A(\rightarrow tt)$ (complementary to $H/A \rightarrow tt$ which has negative interference)
- tbH+(→tb)
- <u>Search Categories:</u>

0 lepton (E _{Tmiss} trigger)	1 lepton (e/ μ trigger)
E _{Tmiss} >200 GeV	E _{Tmiss} >20 GeV
≥6 small Rjets	≥7 small Rjets
2/3/≥4 b-jets (77%)	3/≥4 b jets (77%)
0,1 ≥2 mass-tagged jets (p _T >300 GeV)	0,I ≥2 mass-tagged jets (p⊤>300 GeV)
m _{bb} ^{minDR} <100 or >100 GeV LM or HM	m _{⊤min} ^b <160 or >160 GeV LM or HM

mass-tagged jets (recluster small $R_{jet} \rightarrow Large R_{jets}(R=I)$) <u>Contemporary fit in all categories of m_{eff} </u> (scalar sum of transverse momenta of all objects)

Backgrounds:

-Search categories with low S/B normalize bkgs (tt+≥1b underestimated by MC→ free to float) -multi-jet Data Driven Matrix Method

tt+HF Higgs interpretation

Conclusions

Thoroughly scanning the MSSM phase space

no hint of a signal

but didn't discuss the diboson final states: will be discussed by RD Schaffer in his talk!

Conclusions

Thoroughly scanning the MSSM phase space

no hint of a signal

but didn't discuss the diboson final states: will be discussed by RD Schaffer in his talk!

Back-up

MSSM runl

tt analysis at 8 TeV

$A/H \rightarrow T+T-$ (lep-had)

Major backgrounds:

jets misidentified as leptons and τ -> Data Driven

Fake Factors (FF) for tt and W+jets from W+jets/top CR (obtained reversing m (I, E^{miss}) requirement)

fake factor for multi-jet (MJ) obtained from QCD CR (e/mu isolation inverted)

shape and normalization of the bkg estimated this way are corrected in anti-tau ID control region

 $FF(comb) = FF(W + jets/t\bar{t}) \times r_{W/t\bar{t}} + FF(MJ) \times r_{MJ}$

$A/H \rightarrow \tau + \tau - (lep-had)$

- No loose τ
- MT (I, E_T^{miss}) < 30 GeV

Dedicated rQCD are derived from ehad and muhad in bveto, btag and high MET category.

$A/H \rightarrow \tau + \tau - (had-had)$

Multi-jet backgrounds faking taus Data Driven

Fake Factors parametrized by $pT(\tau)$ and number of tracks of subleading tau, and obtained from Multijet dedicated CR and then applied to the anti-ID regions to obtain estimates for the signal regions

W+jets and tt bkg are also evaluated applying to MC a fake rate obtained from data CR.

No excess observed

$A/H \rightarrow T+T-$ (systematics)

Impact of systematics on the total signal strength in MSSM scan mH=600 GeV tan β =20

Source of uncertainty	F_ (%)	F ₊ (%)
$t\bar{t}$ background parton shower model	-21	+39
$\tau_{\rm had-vis}$ energy scale, detector modelling	-10	+12
$r_{\rm MJ}$ estimation b-veto region ($\tau_{\mu}\tau_{\rm had}$)	- 5	+ 6
$r_{\rm MJ}$ estimation b-veto region ($\tau_e \tau_{\rm had}$)	- 2.3	+ 3.0
bbH signal cross-section uncertainty	- 3.8	+ 1.6
Multi-jet background ($\tau_{had}\tau_{had}$)	- 2.2	+ 2.6
Jet-to- $\tau_{had-vis}$ fake rate <i>b</i> -veto region ($\tau_{lep}\tau_{had}$)	- 1.3	+ 2.9
$\tau_{\rm had-vis}$ energy scale, in-situ calibration	- 1.4	+ 1.1
$r_{\rm MJ}$ estimation high- $E_{\rm T}^{\rm miss}$ region ($ au_{\mu} au_{ m had}$)	- 1.4	+ 1.0
τ trigger (2016)	- 0.5	+ 1.3
Statistics (data and simulation)	-48	+25

Charged Higgs $H^{\pm} \rightarrow \tau v$

more details in parallel talk by A. Ferrari

W from top and τ decaying hadronically

Selection:

- MET trigger, one τ_{had} (pT>40 GeV), no e or μ ,
- MET > 150 GeV, m_T (т+MET)>50 GeV
- 3 jets ($\geq I$ b-tag) with $p_T(j) > 25 \text{GeV}$

Backgrounds:

- True T_{had}: from MC.W→Tv (tt) bkg norm. (validated) in CRs with m_T < 100 GeV and 0 and ≥2 b-tags.
- Jet->τ_{had} fakes: mainly multi-jet. Fake Factor from anti-ID selection, as SR but MET<80 GeV and 0 b-tag

improves 3.2 fb⁻¹ result within 200 -2000 GeV

Source of systematic	Impact on the expected limit (in %)			
uncertainty	$m_{H^+} = 200 \text{ GeV}$	$m_{H^+} = 1000 \text{ GeV}$		
Experimental				
luminosity	1.5	0.9		
trigger	< 0.1	< 0.1		
$ au_{ m had-vis}$	1.0	1.4		
jet	3.0	0.2		
$E_{ m T}^{ m miss}$	< 0.1	< 0.1		
Fake factors	0.8	4.7		
Signal and background models				
<i>tī</i> modelling	13.2	3.5		
H^+ signal modelling	1.4	1.4		

Charged Higgs $H^{\pm} \rightarrow tb$

 $tbH^{\pm} \rightarrow tb$, tt semi-leptonic, similar to tth(bb)

Categorization of SR and CRs by n-j and n-b

- Single lepton triggers
- I lepton $p_T > 25$ GeV
- \geq 4jets p_T >25GeV (\geq 2 b-tagged)

A maximum likelihood fit to all regions is performed using as input a BDTin SR(ΔR_{bb} , p_T (jet_{lead}),m_{bb}...) and Hadd (scalar sum of jet pT) in CR

Background:

tt+light (reweighted to NNLO prediction[Top+ +2.0]), tt + \geq c, tt + \geq b (main bkg) free in the fit.

Uncertainty Source	$\Delta \mu (H_{300}^{+})$		$\Delta \mu(H^+_{800})$	
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53	+0.07	-0.07
Jet flavour tagging	+0.30	-0.29	+0.07	-0.07
$t\bar{t}+\geq 1c$ modelling	+0.23	-0.22	+0.03	-0.03
Background model statistics	+0.19	-0.19	+0.05	-0.05
Jet energy scale and resolution	+0.18	-0.17	+0.03	-0.03
$t\bar{t}$ +light modelling	+0.16	-0.16	+0.03	-0.03
Other background modelling	+0.15	-0.14	+0.03	-0.03
Jet-vertex association, pileup modelling	+0.12	-0.11	+0.01	-0.01
Luminosity	+0.12	-0.12	+0.01	-0.01
Light lepton (e, μ) ID, isolation, trigger	+0.01	-0.01	< +0.01	< -0.01
Total systematic uncertainty	+0.72	-0.79	+0.13	-0.11
$t\bar{t} + \ge 1b$ normalisation	+0.36	-0.36	+0.03	-0.03
$t\bar{t} + \geq 1c$ normalisation	+0.15	-0.14	+0.02	-0.02
Total statistical uncertainty	+0.44	-0.43	+0.08	-0.08
Total	+0.84	-0.90	+0.15	-0.13

di-Higgs

Di-Higgs production is small in the SM, enhanced in BSM both non resonant and resonant. bbyy (@13 TeV 3.2 fb⁻¹)

no excess (run I excess at 300 GeV)

WWYY (WW→lvqq),

- di-photon triggers, 2 photons (p_T>35/25 GeV) $|m_{\gamma\gamma}-m_h|$ <2 $\sigma_{\gamma\gamma}$ (1.7 GeV) sidebands used to extract di-photon continuum
- ≥2 jets, no b-tag
- \geq I lepton (SR), 0 leptons (CR)

simple counting experiment: has a slight excess 15 evts obs for 7.88±1.24 exp

$bb\gamma\gamma$ analysis at 8 TeV

Phys. Rev. Lett. 114 (2015) 081802,

The present result excludes excesses above 3 events at 95% CL. The modest excess presented in Ref. [8] would translate into about 2 events in the 2015 dataset, under the assumption that it was induced by a gluon-initiated state.

$bb\gamma\gamma$ analysis at 13 TeV

Process	0-tag	2-tag
Continuum background	35.8 ± 2.1	$1.63 \hspace{0.2cm} \pm \hspace{0.2cm} 0.30$
SM single-Higgs	1.8 ± 1.5	0.14 ± 0.05
SM di-Higgs	< 0.001	0.027 ± 0.006
Observed	27	0

Table 1: Number of expected and observed events in the $m_h \pm 2 \sigma_{m_{\gamma\gamma}}$ mass window in the 0-tag and 2-tag regions in the non-resonant selection, in the 3.2 fb⁻¹ of data analysed. For the SM di-Higgs sample, a cross-section of 37.9 fb is assumed,

<u>WWYY</u> (systematics)

Source of uncertainties	Non-resonant hh A	$X \rightarrow hh$ ll number	Single-h bkg rs are in %	Cont. bkg	
Luminosity 2015+2016		2.9	2.9	2.9	-
Trigger		0.4	0.4	0.4	-
Pileup re-weighting		0.8	0.2	1.8	
Event statistics		2.0	1.8	2.7	14.7
	energy resolution	2.0	1.8	1.2	New Sector
Photon	energy scale	4.2	4.1	1.6	-
Filotoli	identification	4.2	4.2	4.2	-
	isolation	1.0	1.0	1.1	-
T at	energy resolution	0.8	0.2	8.0	-
JCI	energy scale	3.5	3.5	5.2	-
	b-jets	0.06	0.05	5.4	-
h togging	c-jets	0.5	0.5	0.3	-
<i>b</i> -tagging	light jets	0.4	0.4	0.4	-
	extrapolation	0.006	0.06	0.8	-
Lenton	electron	0.7	0.7	0.7	-
Lepton	muon	0.3	0.3	0.6	-
	lepton dependence	-	-	-	7.4
¢	background modelling	-	-	-	3.8
εγγ	sideband definition	-	-	-	1.2
	statistics on $\epsilon_{\gamma\gamma}$	-	-	-	1.3
	PDF	(2.1)	-	2.2	-
	α_S	(2.3)	-	1.5	-
	scale	(6.0)	-	3.7	-
Theory	HEFT	(5.0)	-	-	-
	jet multiplicity	-	-	12.5	-
	$BR(h \rightarrow \gamma \gamma)$	2.1	2.1	2.1	-
	$BR(h \rightarrow WW^*)$	1.5	1.5	1.5	-
Total		12.0	8.4	18.6	17.0

di-Higgs (bbbb)

<u>Resolved</u>: 4 b's at 70% eff, ($R_{jet} = 0.4$), $p_{Tjet} > 30 \text{ GeV}$

- pairing uses angles of jets, depends on m_{4j}
- m_h(125) constraint also used.

95% of bkg is multijet, obtained from data requiring exactly 2 jets with b-tag and inverting m_h constraint

Unresolved:

- 2 fat jets (R_{jet} =I) each associated \geq Ib-tag track-jet
- $p_{T_{j1}} p_{T_{j2}} > 450/250 \text{ GeV}, |\eta| < 2.0, m_J > 50 \text{ GeV}$ m_J compatible with $m_h(125)$
- 3 categories, 2/3/4 tag: I b-tag for each Higgs or 2 on one and I(2) on the other.

Background: multijet(83-87%) and tt.

- Multijet obtained from data in sidebands (no b-tag requirement).
- Sideband also provides tt normalization.
- For resonant search boosted and resolved are combined.

		2015			2016	
Source	Background	SM hh	$G^*_{\rm KK}$ (800 GeV)	Background	SM hh	$G^*_{\rm KK}$ (800 GeV)
Luminosity	_	2.1	2.1	_	3.7	3.7
JER	-	5.7	3.3	-	5.4	3.5
JES	-	6.4	1.3	-	6.6	1.3
<i>b</i> -tagging	-	23	35	-	23	35
Theoretical	-	9.7	4.2	-	9.7	4.2
Multijet	5	-	_	5	-	-
tī	58	-	-	58	-	-
Total	5.5	26	35	5.5	27	36

di-Higgs	(bbbb)	systematics
----------	--------	-------------

Resolved

Unresolved

	2-tag-split		3-	3-tag		4-tag	
Source	Background	$G^*_{\rm KK}$ (2 TeV)	Background	$G^*_{\rm KK}$ (2 TeV)	Background	$G_{\rm KK}^{*}$ (2 TeV)	
Luminosity	-	2.9	-	2.9	-	2.9	
JER	-	0.1	-	0.1	-	0.3	
JMR	-	12	-	12	-	12	
JES/JMS	-	4.5	-	4.2	-	3.3	
b-tagging	-	58	-	15	-	38	
Theoretical	-	2.7	-	2.3	-	2.4	
Bkg Estimate	4.4	-	4.6	-	21	-	
Statistical	0.5	1.4	1.1	1.0	1.2	1.3	
tī	1.6	-	4.7	-	10	-	
Total Sys	4.7	59	6.6	20	24	40	