

Searches for ttH(bb) production

Gregor Kasieczka for the CMS Collaboration Higgs Couplings 2016

Thursday 10 November 16

Why ttH?

- Large top quark mass:
 - expect top quark Yukawa (Y_t) coupling to be of order one
 - too large to observe Higgs-to-top decay
- Y_t also contributes to
 - fermion loop in H production from gluons
 - H decay to photons g
- But due to potential BSM physics contributing to the loop they can't be used to measure Y_t directly. H
- ttH allows direct measurement of Y
 - Deviation from SM prediction could hint at heavy top-partners

Why H(bb)?

- Advantages:
 - Highest branching fraction
 - Fermion-only production and decay
- Disadvantages:

С

- complicated final state
- large backgrounds
- irreducible ttbb background has large theory uncertainties

Overview

- Up to **12.9 fb⁻¹** at 13 TeV
- Details: CMS PAS HIG-16-038
- Strategy:
 - I. Select events compatible with $tt \rightarrow dilepton / lepton+jets$ and $H \rightarrow bb decay$
 - II. Categorize according to jet and b-tag multiplicity
 - III. Discriminate between signal/background with BDTs and MEM
 - IV. Extract limit by combined fit to data in all categories

I: Event Selection

- Jets: anti-k_T (R=0.4) using CHS input
 - \geq 4 with p_T > 30 GeV for Lepton+Jets
 - \geq 2 with p_T > 30 GeV (p_T > 20 GeV subleading) for Dilepton
- Leptons:
 - Exactly one electron (p_T>30 GeV) OR muon (p_T>25 GeV) for Lepton+Jets
 - Exactly two opposite-sign leptons. Leading $p_T > 25$ GeV sub-leading $p_T > 15$ GeV
- Corrections:
 - Pile up reweighting
 - Lepton scale factors
 - Jet energy scale and resolution corrections
 - b-tag discriminator

I: Samples

• Data:

- Lepton+Jets: 12.9 fb⁻¹
- Dilepton: I2.9 fb⁻¹ (μμ, eμ) / II.4 fb⁻¹ (ee)
- Signal and tt background MC:
 - Powheg Box V2 + Pythia 8
 - New CMS tune: CUETP8M2T4
 - $\alpha_{ISR} = 0.118$ and $h_{damp} = 272.2$
 - Improves data/MC agreement for jet multiplicity

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

II: Categories

III: Boosted Decision Tree

- Gradient boosting decision trees
- Train for ttH(bb) vs sum-of-backgrounds
- Individual training and variable selection for each jet/b-tag category
- Hyperparameters and selection of variables optimized using particle swarm algorithm

8

• Only consider well modeled variables

Example:

BDT input in Lepton+jets ≥ 6 jets ≥ 4 tags:

- best Higgs mass
- M₂(tag, tag) closest to 125 GeV
- M(jets, lepton, MET)
- 4th and 5th highest b-tag discriminator score
- ∑ p⊤ (jets, lepton, MET)

III: Matrix Element for ttH(bb) vs ttbb

Construct per-event signal/background probability using full kinematic information in an analytical approach

Works best for final states with many reconstructed objects.

Possible but computationally expensive to integrate over missing jets

IV: Dilepton fit

(plots are pre-fit)

11.4 - 12.9 fb⁻¹ (13 TeV)

Systematics

- Shape uncertainties
 - b-tag discriminator
 - JES and JER
 - Lepton ID/Isolation, Trigger efficiency, Pile up, Q² scale,
- Rate uncertainties
 - Normalisation of different processes
 Separate for each tt+heavy flavour channel
 - PDF for different production channels (gg, qq, qg, ttH)
 - Parton Shower
- MC bin-by-bin statistics

Yields - Pre Fit

Yields - Post Fit

Lepton + Jets j6 t4, high BDT

Results

Lepton+Jets per Category

- High-purity bins provide highest sensitivity (as constructed)
- Most sensitive single category shows upward fluctuation in signal region

Dilepton per Category

- High-purity bins provide highest sensitivity (as constructed)
- Most sensitive single category shows upward fluctuation in signal region

Conclusions

- Update of HIG-16-004 to up to 12.9 fb⁻¹
- Simple combination of BDT and MEM discrimination techniques
- Observed (expected) upper limit of $\mu < 1.5$ (1.7) at the 95% confidence level, and a best fit value of $\mu = -0.19^{+0.80}_{-0.81}$
- Now we need to get back and analyze the 40 fb⁻¹ on tape
 - Revisit boosted events
 - More complex classifier combination
 - Higher statistics ttbb sample
 - Stay tuned..

Thank you!

Bonus Slides

Particle Swarm

- See: Particle swarm optimization, <u>J. Kennedy</u>, <u>R. Eberhart</u> Proceedings of the IEEE International Conference on Neural Networks, 1995.
- Optimization algorithm
- Different BDT setting (i.e. tree structure and variables) form the search-space
- A specific setting corresponds to one point in this search space
- Algorithm:
 - Create swarm of candidate BDTs
 - Each BDT is initialized with a random set of input variables and position in parameter-space
 - Do N iterations
 - Repeatedly train/test at current position.
 - Vary input variables to maximize ROC while KS>threshold
 - Then the BDTs move to new positions, based on their own and swarms best previous positions

Final Discriminators Lepton+Jets

Lepton + Jets j4 t4, low BDT

0.7

0.8

Lepton + Jets j4 t4, high BDT

Lepton + Jets j5 t4, low BDT

Lepton + Jets j5 t4, high BDT

Lepton + Jets j6 t3, low BDT

Lepton + Jets j6 t3, high BDT

Lepton + Jets j6 t4, low BDT

Lepton + Jets j6 t4, high BDT

Final Discriminators Dilepton

Dilepton j3 t3

Dilepton j4 t3, low BDT

Dilepton j4 t3, high BDT

Dilepton j4 t4, low BDT

Dilepton j4 t4, high BDT

Extra Variables Lepton+Jets

Lepton+Jets BDT Inputs

Lepton+Jets BDT Output

List of BDT Inputs

4 jets, 4 tags	5 jets, > 4 tags	
$\sum p_{\rm T}({\rm jets, lepton, MET})$	avg. $\Delta \eta$ (jet, jet)	
avg. CSVv2 of b-tagged jets	HT	
aplanarity	avg. CSVv2 of b-tagged jets	
H_3	$M_2(tag, tag)$ closest to 125	
$(\Sigma p_{\rm T}({\rm jet}))/(\Sigma E({\rm jet}))$	M_3	
M_2 of min $\Delta R(tag, tag)$	$\sum p_{\rm T}$ (jets, lepton, MET)	
	M_2 of min $\Delta R(tag, tag)$	
	aplanarity	
	avg. $\Delta R(tag, tag)$	
\geq 6 jets, 3 tags	\geq 6 jets, \geq 4 tags	
aplanarity	best Higgs mass	
$\sqrt{\Delta\eta(t^{\text{lep}},bb) \times \Delta\eta(t^{\text{had}},bb)}$	$M_2(tag, tag)$ closest to 125	
$(\Sigma p_{\rm T}({\rm jet}))/(\Sigma E({\rm jet}))$	M(jets, lepton, MET)	
$\min \Delta R(tag, tag)$	4th highest CSVv2	
2nd moment of b-tagged jets' CSVv2	$\sum p_{\rm T}$ (jets, lepton, MET)	
$\sum p_{\rm T}$ (jets, lepton, MET)	5th highest CSVv2	
b-tagging likelihood ratio		

Extra Variables Dilepton

Dilepton BDT Ouput

List of BDT Inputs

3 jets, 3 tags	\geq 4 jets, 3 tags	\geq 4 jets, \geq 4 tags	
$\langle d \rangle_{\text{tagged}}$	Centrality(jets & leptons)	Centrality(jets & leptons)	
$H_1(jets)$	C(jets)	Centrality(tags)	
$M_{ m higgs-like}^{ m bj}$	$H_2(tags)$	H_T^{tags}	
$M_{ m tag,tag}^{ m max\ mass}$	$M_{ m higgs-like}^{ m jj}$	$M_{ m higgs-like}^{ m jj}$	
min $\Delta R_{tag,tag}$	$M_{ m jet, jet, jet}^{ m max p_T}$	min $\Delta R_{ m jet, jet}$	
$\max \Delta \eta_{ ext{jet,jet}}$	$M_{ ext{tag,tag}}^{\min\Delta R}$	$M_{jet,tag}^{\min\Delta R}$	
min $\Delta R_{\text{jet,jet}}$	min $\Delta R_{tag,tag}$	$M_{ m tag,tag}^{ m max\ mass}$	
$\sum p_{T \text{jets,leptons}}$	$\max \Delta \eta_{ ext{tag,tag}}$	$M_{ ext{tag,tag}}^{\min\Delta R}$	
$H_4/H_0(\text{tags})$	$ au_{ ext{tag,tag}}^{ ext{max mass}}$	$\max \Delta \eta_{ ext{jet,jet}}$	
		$\max \Delta \eta_{ ext{tag,tag}}$	
	<	median M _{jet,jet}	

Systematics

Source	Туре	Remarks
Luminosity	rate	Signal and all backgrounds
Lepton ID/Iso	shape	Signal and all backgrounds
Trigger efficiency	shape	Signal and all backgrounds
Pileup	shape	Signal and all backgrounds
Jet energy scale	shape	Signal and all backgrounds
Jet energy resolution	shape	Signal and all backgrounds
b-tag HF fraction	shape	Signal and all backgrounds
b-tag HF stats (linear)	shape	Signal and all backgrounds
b-tag HF stats (quadratic)	shape	Signal and all backgrounds
b-tag LF fraction	shape	Signal and all backgrounds
b-tag LF stats (linear)	shape	Signal and all backgrounds
b-tag LF stats (quadratic)	shape	Signal and all backgrounds
b-tag charm (linear)	shape	Signal and all backgrounds
b-tag charm (quadratic)	shape	Signal and all backgrounds
QCD scale (ttH)	rate	Scale uncertainty of NLO ttH prediction
QCD scale $(t\bar{t})$	rate	Scale uncertainty of NLO tt prediction
QCD scale (tt+HF)	rate	Additional 50% rate uncertainty of tt+HF predictions
QCD scale (t)	rate	Scale uncertainty of NLO single t prediction
QCD scale (V)	rate	Scale uncertainty of NNLO W and Z prediction
QCD scale (VV)	rate	Scale uncertainty of NLO diboson prediction
pdf (gg)	rate	PDF uncertainty for gg initiated processes except ttH
pdf (gg tīH)	rate	PDF uncertainty for ttH
pdf (qą̄)	rate	PDF uncertainty of $q\bar{q}$ initiated processes (t \bar{t} W, W, Z)
pdf (qg)	rate	PDF uncertainty of qg initiated processes (single t)
Q^2 scale (t \bar{t})	shape	Renormalization and factorization scale uncertainties of
		the tt ME generator, independent for additional jet fla-
		vors
PS Scale $(t\bar{t})$	rate	Renormalization and factorization scale uncertainties of
		the parton shower (for tt events), independent for addi-
		tional jet flavors
Bin-by-bin statistics	shape	statistical uncertainty of the signal and background pre-
		diction due to the limited sample size

Pre-fit Shape impact on lepton+jets j6 t3

Process	tī rate up/down [%]	tīH rate up/down [%]
Jet energy scale	+12.6/-11.8	+8.4/-8.0
Jet energy resolution	+0.2/-0.3	-0.0/-0.1
Pile-up	+0.1/-0.1	-0.2/+0.1
Electron efficiency	+0.5/-0.5	+0.5/-0.5
Muon efficiency	+0.4/-0.4	+0.4/-0.4
Electron trigger efficiency	+1.2/-1.2	+1.3/-1.3
Muon trigger efficiency	+0.8/-0.8	+0.9/-0.9
b-Tag HF contamination	-9.4/+9.8	-2.6/+2.8
b-Tag HF stats (linear)	-3.1/+3.3	-2.5/+2.7
b-Tag HF stats (quadratic)	+2.6/-2.4	+2.4/-2.2
b-Tag LF contamination	+7.1/-5.2	+5.8/-4.5
b-Tag LF stats (linear)	-2.0/+4.4	+0.5/+1.5
b-Tag LF stats (quadratic)	+2.1/+0.2	+1.5/+0.5
b-Tag charm Uncertainty (linear)	-11.1/+14.9	-3.1/+4.1
b-Tag charm Uncertainty (quadratic)	+0.5/-0.5	-0.0/+0.0
Q^2 scale (tt+LF)	-6.2/+7.5	_
Q^2 scale (tt+b)	-1.7/+2.0	—
Q^2 scale (tt+2b)	-1.1/+1.4	—
Q^2 scale (tt+bb)	-2.0/+2.5	—
Q^2 scale (tt+cc)	-4.3/+5.4	_
PS scale (tt+LF)	+4.8/-9.0	_
PS scale (tī+b)	-0.9/+0.7	_
PS scale (tī+2b)	-0.8/+0.9	_
PS scale (tī+bb)	-1.5/+2.7	_
PS scale $(t\bar{t}+c\bar{c})$	-3.9/+3.0	_