Search for the production of the Higgs boson in association with top quarks (tTH) in $\gamma\gamma$ and multi-lepton channels at CMS

HIGGS COUPLINGS 2016, SLAC : 10TH NOVEMBER 2016

INTRODUCTION

- Production of the Higgs boson in association with a pair of top quarks (ttH) probes the ttH coupling
 - Direct handle on the ttH vertex at tree level : gluon fusion involves a loop
 - Cross-section of ttH is ~508 fb at 13 TeV, roughly 4 times the value at 8 TeV, increased potential for discovery
- - → $H \rightarrow \gamma \gamma$: small branching ratio, but clean final state (low systematic uncertainties) CMS PAS HIG-16-020
 - Multi-leptonic (H→ZZ*, H→WW*, H→ττ): higher rate, multi-lepton final state with low background CMS PAS HIG-16-022
 - → H→bb : high branching ratio, but complex multi-jet final state
 Talk by Gregor Kasieczka

SUMMARY OF RUN-1 RESULTS

- Studies of the tt
 the production in LHC Run-1 at CMS were based on the different Higgs decay channels : γγ, bb
 tr
 tr
 bb

 H→WW*, H→ττ with multi-lepton final states).
- Combination of different Higgs decay channels :
 - ➡ ttH combination from Run1 CMS measurements :
 - $\mu_{t\bar{t}H}$ = **2.8** ± 1.0
 - ▶ 95% CL limit = 4.5

$t t H with H \rightarrow \gamma \gamma$

- A part of the general $H \rightarrow \gamma \gamma$ analysis Talk by Louis Corpe
 - Events with two high p_T isolated photons selected
 - Narrow peak around m_H on top of the falling m_{γγ}
 distribution
 - Different production modes (tt
 H, VBH, VH) identified based on additional final state objects
 - Signal, background extraction from fit to $m_{\gamma\gamma}$ distribution
- Overview of the $H \rightarrow \gamma \gamma$ analysis :

- Event categorisation based on
 - additional final state objects to tag production modes
 - mass resolution and kinematics for the 'Untagged' categories

t tH with $H \rightarrow \gamma \gamma : t tH$ categories

2 categories corresponding to tt
H based on the decay of the top quarks

TTH Leptonic Tag:

 $t\bar{t}
ightarrow bl
u_l \bar{b}q \bar{q}'$ or $t\bar{t}
ightarrow bl
u_l \bar{b}l'
u_{l'}$

- → At least 1 isolated lepton (muon or electron)
- → At least 2 jets
- → At least 1 B-tagged jet
- Diphoton BDT cut

TTH Hadronic Tag:

 $t\bar{t} \rightarrow bq\bar{q}'\bar{b}q\bar{q}'$

5 / 14

Cez

- ➡ No leptons
- ➡ At least 5 jets
- → At least 1 B-tagged jet
- Diphoton BDT cut

Expected signal for ttH categories : very pure in ttH contribution

	and the second								
Event Categories	SM 125GeV Higgs boson expected signal							Bkg	
	Total	ggh	vbf	wh	zh	tth	σ_{eff}	σ_{HM}	(GeV ⁻¹)
TTH Hadronic Tag	2.42	16.78 %	1.28 %	2.52 %	2.39 %	77.02 %	1.39	1.21	1.12
TTH Leptonic Tag	1.12	1.09 %	0.08 %	2.43 %	1.06 %	95.34 %	1.61	1.35	0.42

Search for tTH in $\gamma\gamma$ & multi-lepton channels at CMS

$t \bar{t} H$ with $H \rightarrow \gamma \gamma$: Results

• Results based on **12.9 fb**⁻¹ of data at **13 TeV** collected during **2016**

Uncertainties are statistics dominated

7 / 14

Cez

tth Multi-Leptonic

- Multi-lepton final states from $H{\rightarrow}WW^*,\,H{\rightarrow}ZZ^*\,,\,H{\rightarrow}\tau\tau$

- ➡ B Tag jets: at least 1 jet passing medium WP or 2 jets passing loose WP of B tag algorithm
- **Z veto** : based on $m_{\ell\ell}$, E^{miss} , H^{miss}

8 / 14

Cez

tTHMULTI-LEPTONIC : LEPTON SELECTION

- Important source of to background coming from non-prompt leptons (from b jets in tt
 ,
 misidentified jets, decay-in-flight, photon conversions)
- Dedicated multivariate discriminant to reject non-prompt leptons. Inputs for the MVA:
 - Lepton isolation observables, impact parameter wrt vertex
 - → Ratio of lepton and jet p_T, p_T wrt direction of jet

 Performance is validated in data control region. Data control region also used to estimate residual non-prompt background using loose-to-tight extrapolation.

tth Multi-Leptonic : Event Yields

Expected and observed yields after the selection in 2LSS and 3L final states

	μμ	ee	еµ	3ℓ
tŦW	18.3 ± 0.9	6.8 ± 0.6	24.5 ± 1.1	12.2 ± 0.7
$t\bar{t}Z/\gamma^*$	5.8 ± 0.6	7.4 ± 0.6	15.3 ± 1.3	22.6 ± 1.0
Di-boson	1.4 ± 0.2	1.1 ± 0.2	2.6 ± 0.3	5.7 ± 0.4
tttt	0.8 ± 0.2	0.4 ± 0.1	1.5 ± 0.2	1.2 ± 0.1
tqZ	0.2 ± 0.3	0.4 ± 0.4	0.6 ± 0.6	2.7 ± 0.8
Rare SM bkg.	1.6 ± 0.3	0.5 ± 0.1	1.8 ± 0.1	0.3 ± 0.1
Charge mis-meas.		6.7 ± 0.1	10.0 ± 0.1	
Non-prompt leptons	33.4 ± 1.2	23.1 ± 1.1	61.9 ± 1.7	51.0 ± 1.8
All backgrounds	61.5 ± 1.7	46.4 ± 1.5	118.0 ± 2.5	95.7 ± 2.3
$t\bar{t}H (H \rightarrow WW^*)$	6.3 ± 0.2	2.6 ± 0.1	8.5 ± 0.2	8.0 ± 0.2
t ${ m t}{ m t}{ m H}~({ m H} o au au)$	1.6 ± 0.1	0.7 ± 0.1	2.5 ± 0.1	2.1 ± 0.1
$t\bar{t}H (H ightarrow ZZ^*)$	0.2 ± 0.0	0.1 ± 0.0	0.3 ± 0.0	0.5 ± 0.0
Data	74	45	154	105

- Main sources of background :
 - ➡ Signal like final states : tt̄V (estimated from MC), Di-boson (validated in data)
 - → Others : Non-prompt leptons (largely from tī), charge mis-measured leptons : Data driven estimation
 - ➡ Multivariate BDT is used to separate the different types of backgrounds, use for signal extraction

10/14

Cea

tTH MULTI-LEPTONIC : SIGNAL EXTRACTION BDT

- Multivariate BDT discriminants trained in simulated events to separate the signal from ttV backgrounds and also non-prompt (tt) backgrounds.
- 2 separate BDTs trained using kinematical observables.
 - \rightarrow η of leptons, jet multiplicity, distance between lepton & jet, m_T
 - miss mi
 - For $t\bar{t}$: E_T , H_T , distance between jets
 - ➡ For tīV : leading, trailing lepton p_T, for 3L category : matrix element weight (MEM weight) :

$$w_{i,\alpha}(\Phi') = \frac{1}{\sigma_{\alpha}} \int d\Phi_{\alpha} \cdot \delta^4 \left(p_1^{\mu} + p_2^{\mu} - \sum_{k \ge 2} p_k^{\mu} \right) \cdot \frac{f(x_1, \mu_F) f(x_2, \mu_F)}{x_1 x_2 s} \cdot \left| \mathcal{M}_{\alpha}(p_k^{\mu}) \right|^2 \cdot W(\Phi' | \Phi_{\alpha})$$

11/14

Cea

tTHMULTI-LEPTONIC : SIGNAL EXTRACTION

• 2 Dimensional fit to the two BDT discriminators is performed for signal extraction

tTHMULTI-LEPTONIC : EVENTCLASSIFICATION

- Events in the 2LSS and 3L categories are further categorised before the final signal extraction
 - ➡ Whether the b tagged jets pass a tighter WP
 - Sum of leptonic charges is + or -
 - Presence of hadronic τ for 2LSS

• Main sources of systematic uncertainties:

12/14

Cea

- Lepton selection efficiency
- Fake rate measurement for background estimate

tth Multi-Leptonic : Results

- **13** / 14
- Results based on 12.9 fb⁻¹ of data collected during 2016 and combination with 2.3 fb⁻¹ collected in 2015

Li	Limits and signal strength				
Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$		
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$		
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$		
Combined categories	3.9	$1.4^{+0.7}$	$2.3^{+0.9}_{-0.8}$		
Combined with 2015 data	3.4	$1.3^{+0.6}_{-0.4}$	$2.0^{+0.8} {}_{-0.7}$		

14/14

C 2 7

SUMMARY & OUTLOOK

- Studies of the associated production of the Higgs boson and top quarks with the CMS experiment with data collected in early 2016 (2015) have been presented for the $H \rightarrow \gamma \gamma$ and multi-leptonic channels.
- Probes of the top-Higgs coupling directly at the tree level
- Studies involve complex final states with leptons, jets etc. Special methods are used to improve signal purity and to reduce backgrounds.
- Current measurements are consistent with SM expectation:
 - → tīH multi-leptonic : $\mu = 2.0^{+0.8}_{-0.7}$ (2015 + 2016 combination : 2.3+12.9fb⁻¹)
 - → $t\bar{t}H$ with $H \rightarrow \gamma \gamma$: $\mu = 1.9^{+1.5}_{-1.2}$ (2016 : 12.9fb⁻¹)
- Analyses to be updated with the full dataset collected during 2016 (~3 times the data presented here)

THANK YOU!

ADDITIONAL SLIDES

Search for tTH in $\gamma\gamma$ & multi-lepton channels at CMS

16/14

Cea

ttH with $H \rightarrow \gamma \gamma$: Results (2015 DATA)

17/14

Cea

tth Multi-Leptonic : Uncertainties

Sources of Uncertainty

