Search for di-Higgs production with the ATLAS detector

Tony(Baojia)Tong, Harvard University on behalf of the ATLAS Collaboration Higgs Coupling, SLAC, Nov. 9-12, 2016

Di-Higgs production

- Cross section small in SM:
 - 8 TeV ~ 10 fb (NNLO)
 - 13 TeV ~ 38 fb (NNLO + NNLL)

Motivation

Di-Higgs production

- Cross section small in SM:
 - 8 TeV ~ 10 fb (NNLO)
 - 13 TeV ~ 38 fb (NNLO + NNLL)
- Larger if BSM (•) physics exists
 - Non-resonant Examples
 - tthh, tth vertex modifications

• λ_{hhh} triple-Higgs coupling

Di-Higgs production

- Cross section small in SM:
 - 8 TeV ~ 10 fb (NNLO)
 - 13 TeV ~ 38 fb (NNLO + NNLL)
- Larger if BSM (•) physics exists
 - Non-resonant Examples
 - tthh, tth vertex modifications
 - λ_{hhh} triple-Higgs coupling
 - Resonant Examples
 - KK Graviton
 - Heavy Higgs: 2HDM

Di-Higgs decay

larger branching ratio—higher yield

NO ED TEST

hh-Br

Di-Higgs decay

larger branching ratio—higher yield

Tony Tong

(Harvard)

NO ED TEST

ATLAS Search Br Results (links)	8TeV, fb ⁻¹	13TeV, fb -1	HIL-I
bbbb	<u>20</u>	<u>3 / 13</u>	pros
bb ττ	20		pros
bbyy	<u>20</u>	<u>3</u>	pros
WW*yy	20	<u>13</u>	
Combination	<u>20</u>		

Di-Higgs low mass searches

- Mass range: 250 ~ 1000 GeV
 - Model: resonant, non-resonant
 - trigger efficiency
 - branching ratio

Strategy

Phys. Rev. D 92, 092004 (2015)

Di-Higgs low mass searches

- Mass range: 250 ~ 1000 GeV
 - Model: resonant, non-resonant
 - trigger efficiency
 - branching ratio

- Channels:
 - bbγγ, WW*γγ (250 ~ 500 GeV)

INE CO INE MONTON

Strategy

Phys. Rev. D 92, 092004 (2015)

Di-Higgs low mass searches

- Mass range: 250 ~ 1000 GeV
 - Model: resonant, non-resonant
 - trigger efficiency
 - branching ratio

- Channels:
 - bbγγ, WW*γγ (250 ~ 500 GeV)
 - $bb\tau\tau$, bbbb (~ 1000 GeV)

Strategy

Phys. Rev. D 92, 092004 (2015)

Di-Higgs high mass searches

- Mass range: 1000 ~ 3000 GeV
 - Model: resonant
 - standard objects merge

- Channels:
 - bbbb, $bb\tau\tau$, $bbWW^*$

NE EU ES

Strategy

Phys. Rev. D 94.052002 (2016)

Run II 4b Limit, 3.2 fb⁻¹

- Both built on top of SM $h \rightarrow \gamma \gamma$ selections—clean signature
- Both require 105 GeV $< m_{\gamma\gamma} < 160$ GeV \bullet

Runll bbyy and WW*yy: methods

- Both built on top of SM $h \rightarrow \gamma \gamma$ selections—clean signature
- Both require 105 GeV $< m_{vv} < 160$ GeV

di-Higgs Decay/ **Signal Regions**

tighter mass window: 122 GeV $< m_{vv} < 128$ GeV

Resonance

Non-resonance

Tony Tong

Runll bbyy and WW*yy: methods

- - bbyy

WW*vv (semi-leptonic only)

2 jets, **1 lepton**

same as resonance

- Both built on top of SM $h \rightarrow \gamma \gamma$ selections—clean signature
- Both require 105 GeV $< m_{vv} < 160$ GeV

di-Higgs Decay/ **Signal Regions**

tighter mass window: 122 GeV $< m_{vv} < 128$ GeV

Non-resonance

Resonance

2 b-jets $95 \text{ GeV} < m_{bb} <$ 135 GeV

Tony Tong

(Harvard)

Runll bbyy and WW*yy: methods

bbyy

WW*vv (semi-leptonic only)

mass window cuts on m_{bbyy}

2 jets, **1 lepton**

same as resonance

- Both built on top of SM $h \rightarrow \gamma \gamma$ selections—clean signature
- Both require 105 GeV $< m_{vv} < 160$ GeV

di-Higgs Decay/ **Signal Regions**

tighter mass window: 122 GeV $< m_{vv} < 128$ GeV

Non-resonance

Resonance

2 b-jets $95 \text{ GeV} < m_{bb} <$ 135 GeV

Tony Tong

(Harvard)

Runll bbyy and WW*yy: methods

bbyy

WW*vv (semi-leptonic only)

mass window cuts on m_{bbyy}

fit the full $m_{\gamma\gamma}$ without tighter mass window 2 jets, **1 lepton**

same as resonance

Runll bbyy and WW*yy: results

bbyy and WW*yy Limits

- No resonant excess observed
- Non-resonant hh limit:
 - bbγγ **3.9 pb** (5.4 pb expected)
 - WW*γγ— 25 pb (12.9 pb expected)

Runll bbyy and WW*yy*: limits

ATLAS-CONF-2016-004

Jets Merging and the Two Channels

Standard resolved 4b jets for the low mass range

\sim $R=0.4$	Objects/ Final State	Resolve (250–1100
	Trigger	Mixed b Tr
БЬЬ	Jets	Four 0.4 Anti
	pT cuts	Jet pT > 30
	B-tagging	70% WP on E

NG INI TASI TASI

Runll 4b: object definition

ΔΤΙ	ΔS	F_20	16_	$\cap 10$
	-U-	1-20	10-	043

Jets Merging and the Two Channels

- Standard resolved 4b jets for t
- 1.5 TeV resonance $\rightarrow \sim 600$ G

Obje	ects/	
Final	State	

Jets

pT cuts

B-tagging

NJ CH ES

Tony Tong

ATLAS-CONF-2016-049

1b jets for the low r	nass range	
→ ~ 600 GeV p⊤ H	liggs $\rightarrow \Delta R_{bb} \sim 2m_{F}$	₁/p⊤ ~ C
Resolved (250–1100 GeV)	Boosted (1100-3000 GeV)	R=1.0
Mixed b Trigger		
Four 0.4 Anti-kt Jets		Б b
Jet pT > 30 GeV		b b b
70% WP on EM Jets		

).4

Jets Merging and the Two Channels ATLAS-CONF-2016-049 Standard resolved 4b jets for the low mass range • 1.5 TeV resonance $\rightarrow \sim 600 \text{ GeV } p_T \text{ Higgs } \rightarrow \Delta R_{bb} \sim 2m_h/p_T \sim 0.4$ Resolved **Boosted** (1100-3000 GeV) (250-1100 GeV)Mixed b Trigger

Obje	ects/	
Final	State	

Trigger

Jets

pT cuts

B-tagging

Four **0.4** Anti-kt Jets

Jet pT > **30** GeV

70% WP on EM Jets

Large R-jet Trigger

Two **1.0** trimmed Anti-kt Jets

Leading > **450** GeV Subleading > 250 GeV

77% WP on Anti-kt R=0.2 track jets

Two Higgs Mass Plane

- Signal Region (SR):
 - "Circle" centered at h mass
 - Xhh < 1.6

$$X_{hh} = \sqrt{\left(\frac{m_{\rm J}^{\rm lead} - 124 \text{ GeV}}{\sigma\left(m_{\rm J}^{\rm lead}\right)}\right)^2 + \left(\frac{m_{\rm J}^{\rm subl} - 115 \text{ GeV}}{\sigma\left(m_{\rm J}^{\rm subl}\right)}\right)^2}$$
Tony Tong (Harvard)

(Harvard)

Tony Tong

ATLAS-CONF-2016-049

Two Higgs Mass Plane

- Signal Region (SR):
 - "Circle" centered at h mass
 - Xhh < 1.6
- Control Region (CR) :
 - Ring outside SR (for validation)

$$X_{hh} = \sqrt{\left(\frac{m_{\rm J}^{\rm lead} - 124 \,\,{\rm GeV}}{\sigma\left(m_{\rm J}^{\rm lead}\right)}\right)^2 + \left(\frac{m_{\rm J}^{\rm subl} - 115 \,\,{\rm GeV}}{\sigma\left(m_{\rm J}^{\rm subl}\right)}\right)^2}$$

ATLAS-CONF-2016-049

Two Higgs Mass Plane

- Signal Region (SR):
 - "Circle" centered at h mass
 - Xhh < 1.6
- Control Region (CR) :
 - Ring outside SR (for validation)
- Sideband (SB)
 - Ring outside CR (for modeling)

$$X_{hh} = \sqrt{\left(\frac{m_{\rm J}^{\rm lead} - 124 \,\,{\rm GeV}}{\sigma\left(m_{\rm J}^{\rm lead}\right)}\right)^2 + \left(\frac{m_{\rm J}^{\rm subl} - 115 \,\,{\rm GeV}}{\sigma\left(m_{\rm J}^{\rm subl}\right)}\right)^2}$$

ATLAS-CONF-2016-049

Jets Pair Combinatorics and Cuts

- Select hh pair that has the minimal distance to the diagonal line on the 2D mass plane
- m_{4i} dependent requirements on h pT, eta, and dR_{ij}

Jets Pair Combinatorics and Cuts

- Select hh pair that has the minimal distance to the diagonal line on the 2D mass plane
- m_{4i} dependent requirements on h pT, eta, and dR_{jj}
- Good signal efficiency across large mass ranges

Resolved 4b Background

- Background:
 - 93% qcd—data driven
 - 7% ttbar—MC

INS ED EXS

Runll 4b: resolved background estimation

ATLAS-CONF-

201	6 (
<u>'20 </u>	0^{-1}	<u> 149</u>

Resolved 4b Background

- Background:
 - 93% qcd—data driven
 - 7% ttbar—MC

- Background shape estimation comes from 2Tag SB(sideband)/CR(control)/ SR(signal) regions
- 2b inclusive sample is used to derive the **normalization** estimation in 4b

Runll 4b: resolved background estimation

201	6 (
<u>'20 </u>	0^{-1}	<u> 149</u>

Signal Region: Resolved

27

Track Jets Tagging and Signal Regions

Runll 4b: boosted selection

Track Jets Tagging and Signal Regions

• 4Tag: 3Tag: (recover efficiency)

• 2Tag Split: one b Tag in each large R jet

Runll 4b: boosted selection

Track Jets Tagging and Signal Regions

- 2Tag Split: one b Tag in each large R jet
- Three Signal Regions: 4Tag, 3Tag and 2Tag Split

Runll 4b: boosted selection

• 4Tag: 57ag: (recover efficiency)

ATLAS-CONF-2016-049

Boosted 4b Background

- Background:
 - 85% qcd—data driven
 - 15% ttbar—data driven

Runll 4b: boosted background estimation

ATLAS-CONF-2016-049

Boosted 4b Background

- Background:
 - 85% qcd—data driven
 - 15% ttbar—data driven

- Background shape estimation comes from 0b SB(sideband)/CR(control)/ SR(signal) regions
- Fit the leading jet mass in SB to extract ttbar and qcd normalization estimation comes from 0b to N(2, 3, 4)b

Runll 4b: boosted background estimation

Signal Region: Boosted

• Final discriminant: dijet invariant mass; no significant excess observed

Tony Tong

(Harvard)

ATLAS-CONF-2016-049

Combined Limits

 Resolved + Boosted Combined Asymptotic Limits

- Non-Resonance limit:
 - bbbb: **1 pb** (1.3 pb expected)

ATLAS-CONF-2

|--|

Conclusion

- Searches covered by ATLAS
 - bbbb (<u>8 TeV</u>, 13 TeV <u>3 fb⁻¹</u>, <u>13 fb⁻¹</u>)
 - bbWW* (13 TeV in progress)
 - $bb\tau\tau$ (8 TeV, 13 TeV in progress)
 - bbγγ (<u>8 TeV</u>, 13 TeV <u>3 fb⁻¹</u>)
 - WW*γγ (8 TeV, 13 TeV <u>13 fb</u>⁻¹)
 - WW*WW* (13 TeV in progress)

• So far no significant excess observed, 13 TeV non-resonance limit at 1 pb

Conclusion

- Searches covered by ATLAS
 - (<u>8 TeV</u>, 13 TeV <u>3 fb</u>⁻¹, <u>13 fb</u>⁻¹) • bbbb
 - bbWW* (13 TeV in progress)
 - $bb\tau\tau$ (8 TeV, 13 TeV in progress)
 - bbγγ (<u>8 TeV</u>, 13 TeV <u>3 fb</u>⁻¹)
 - WW*γγ (8 TeV, 13 TeV <u>13 fb</u>⁻¹)
 - WW*WW* (13 TeV in progress)
- Also protect studies—see talks tomorrow!

ATLAS-CONF-2016-024

• So far no significant excess observed, 13 TeV non-resonance limit at 1 pb

Search teams are actively working on development and 2016 data! Stay tuned!

Back up Slides

HGGS2016 COUPLINGS

Fit on Leading Jet Mass Distribution

- Given: $N_{data}^{\nu_b} = \mu_{acd}^{\nu_b} N_{gcd}^{0b} + \alpha_{t\bar{t}}^{\nu_b} N_{t\bar{t}}^{\nu_b}$
- Simultaneous **fit** of μ_{qcd} , a_{tt} to extract the normalization factors
- All fits are independent

Tony Tong

(Harvard)

Runll 4b

ATLAS-CONF

-201	6-	02	19

Reweighting Details

- Kinematics dependence of μ_{qcd} is corrected by reweighting • Resolved: Njet distribution, leading Higgs candidate pT, subleading Higgs
- candidate E
- Boosted; leading Higgs candidate pT, leading track jet pT of the leading Higgs candidate, leading track jet pT of the subleading Higgs candidate Iterated reweighting is used such that the correlations are taken into
- account.

Control Region: Resolved

• **Good** agreement in shape and normalization

Runll 4b

ATLAS-CONF

-2016-	049

Control Region: Boosted

Good agreement in shape and normalization

Tony Tong

Runll 4b

ATLAS-CONF

-201	6-	-()	49

-		
		_
	_	
		_
		-
		_
		_
		-
		1
		_
		_
		_
		_
		_
		_
·		
1		
4		
-		

Uncertainties Countdown

- Signal uncertainty mainly comes from **b-tagging**
- Bkg uncertainty is dominated by data driven control region estimates
- Background/QCD shape **uncertainty** is also applied

			Resolve	ed		
		2015			2016	
Source	Background	SM hh	$G_{\rm KK}^{*}$ (800 GeV)	Background	SM hh	$G^*_{ m KK}$ (80
Luminosity	_	2.1	2.1	_	3.7	3
JER	_	5.7	3.3	_	5.4	3
JES	_	6.4	1.3	_	6.6	1
<i>b</i> -tagging	_	23	35	_	23	35
Theoretical	_	9.7	4.2	_	9.7	4
Multijet	5	_	_	5	_	-
$t\bar{t}$	58	_	_	58	_	-
Total	5.5	26	35	5.5	27	36

Boosted

	2-tag-split		3-	3-tag		4-tag	
Source	Background	G^*_{KK} (2 TeV)	Background	G^*_{KK} (2 TeV)	Background	G^*_{KK} (2	
Luminosity	-	2.9	-	2.9	-	2.	
JER	-	0.1	-	0.1	-	0.	
JMR	-	12	-	12	-	12	
JES/JMS	-	4.5	-	4.2	-	3.	
<i>b</i> -tagging	-	58	-	15	-	38	
Theoretical	-	2.7	-	2.3	-	2.	
Bkg Estimate	4.4	-	4.6	-	21	-	
Statistical	0.5	1.4	1.1	1.0	1.2	1.	
$t\bar{t}$	1.6	-	4.7	-	10	-	
Total Sys	4.7	59	6.6	20	24	40	

Limit Comparison

ICHEP-Moriond Limit Direct Comparison

<u> </u>	
<u>d</u>	
$\frac{10}{10^3}$	
ч Ч Ч	
1	-
ູ້ ⊻້10 ²	
$\bigwedge^{}$	
1	
•	500

ATLAS-CONF

-201	6-	.04	49

Resolved and Boosted Results

_				
-	Sample		Signal Region Y	ield
-	Multijet		81.4 ± 4.9	
	$t\bar{t}$ R	esolved	5.2 ± 2.6	
	Z+jets		0.4 ± 0.2	
	Total		87.0 ± 5.6	
-	Data		87	
-	SM hh		0.34 ± 0.05	
	$G^*_{\rm KK}$ (500 GeV)), $k/ar{M}_{ m Pl}=1$	27 ± 5.9	
Events / 20 GeV	18 16 14 12 10 8 6 4 4 4 4 4 4 4 4 4 4	4<i>TLAS</i> ∫s = 8 TeV dt = 19.5 fb ⁻¹	Signal Region	ncertainty $i_{PI} = 1.0$ $\overline{M}_{PI} = 1.0, \times 3$
Data / Bkgd				1400 1600 m _{4j} [GeV]

NO ED ILSI TUTUTUN

(Harvard)

Tony Tong

44

Run I 4b

Eur. Phys. J. C (2015) 75:412

	Sample	Signal Region Yield
	Multijet $t\bar{t}$ Boosted Z+jets	23.5 ± 4.1 2.2 ± 0.9 0.14 ± 0.06
	Total	25.7 ± 4.2
	Data	34
	$G_{\rm KK}^* \ (1000 GeV), \ k/\bar{M}_{\rm Pl} = 1$	2.1 ± 0.6
	12 $10 $ 10	nal Region
a / bkga		
Lai	0 800 1000 1200 140	00 1600 1800 2000 m _{2J} [GeV]

Combined Limit

Control Regions

• Control region: $bb\gamma\gamma$ —0b-tags; $WW^*\gamma\gamma$ —zero lepton + 2 jets

NO ED ILSI TUTUTUN

(Harvard)

ATLAS-CONF-2016-004 ATLAS-CONF-2016-071

bbyy Systematics

Source of sy uncertainty

Luminosity Trigger Pileup rewe Generated e

Photon

Jet

• Systematics dominated by photon energy resolution

b-tagging

Shape

Theory

Total

ystematic	Impact in $\%$ on the search for di-Higgs production in					
	non-resonant mode			resonant mode		
	hh signal	Single- h bkg	Cont.	$X \rightarrow hh \text{ signal}$	SM $h+hh$ bkg	,)
	± 5.0	± 5.0	-	± 5.0	± 5.0	
	± 0.4	± 0.4	-	± 0.4	± 0.4	
eighting	± 1.6	+2.4 / -0.4	-	± 1.0	± 2.3	
event statistics	± 1.3	± 16.8	-	± 4.3	± 12.6	
energy resolution	+30/-15	+30 / -15	-	+7.0 / -0.3	+0.0 / -3.8	
energy scale	± 0.5	± 0.5	-	+1.9 / -3.5	$+2.8 \ / \ -3.0$	
identification	± 2.5	± 2.5	_	± 2.5	± 2.5	
isolation	± 3.4	± 3.4	-	± 3.9	± 3.9	
energy resolution	± 2.7	± 24	_	± 9.1	$\pm 1.6 - 9.8$	
energy scale	+1.3 / -1.1	± 12	-	± 12.1	± 10.6	
<i>b</i> -jets	± 12.9	± 10.0	_	± 12.6	± 12.6	
$c ext{-jets}$	± 0.05	± 4.1	-	± 0.2	± 3.0	
light-jets	± 0.5	+3.9/-4.6	-	± 0.2	± 0.5	
extrapolation	± 5.1	± 2.8	-	± 5.2	± 3.0	
$m_{\gamma\gamma}$ modelling	-	-	±11	-	_	
$m_{b\bar{b}\gamma\gamma}$ modelling	-	-	-	-	± 25.0	_
$PDF + \alpha_S$	-	+6.8 / -6.6	_	_	+7.4 / -7.3	
Scale	-	+5.7 / -8.2	-	-	+6.9 / -10.9	
EFT	_	_	_	_	± 5.7	
	+34/-22	+43/-35	±11	+23/-22	+36/-35	

Runll bbyy ar

WW*yy Systematics

	v
	Trigger Pileup re-we Event statis
	Photon
	Jet
Systematics dominated by statistics	<i>b</i> -tagging

Lepton

 $\epsilon_{\gamma\gamma}$

Theory

	YY: methods				
				ATLAS-(<u> CONF-2016-004</u>
				ATLAS-(<u> CONF-2016-071</u>
,					
		0.4	0.4	0.4	_
weighting		0.8	0.2	1.8	-
istics		2.0	1.8	2.7	14.7
	energy resolution	2.0	1.8	1.2	_
	energy scale	4.2	4.1	1.6	-
	identification	4.2	4.2	4.2	_
	isolation	1.0	1.0	1.1	-
	energy resolution	0.8	0.2	8.0	_
	energy scale	3.5	3.5	5.2	-
	<i>b</i> -jets	0.06	0.05	5.4	_
	c-jets	0.5	0.5	0.3	-
	light jets	0.4	0.4	0.4	_
	extrapolation	0.006	0.06	0.8	-
	electron	0.7	0.7	0.7	_
	muon	0.3	0.3	0.6	-
	lepton dependence	_	_	_	7.4
	background modelling	-	-	-	3.8
	sideband definition	-	-	-	1.2
	statistics on $\epsilon_{\gamma\gamma}$	-	-	-	1.3
	PDF	(2.1)	_	2.2	_
	$lpha_S$	(2.3)	-	1.5	-
	scale	(6.0)	-	3.7	-
	HEFT	(5.0)	-	-	-
	jet multiplicity	_	-	12.5	-