

Sonia El Hedri

Timothy Cohen, Matthew Dolan, James Hirschauer, Nhan Tran, Andrew Whitbeck

Higgs Couplings 2016

November 11, 2016

Simplified Models and LHC searches

- Simple and flexible formalism
- Still many possible searches and observables ⇒ Why?
- What is each observable suited for?
- How are these observables related?
- Can we compare their performances?

Simplified Models and LHC searches

- Simple and flexible formalism
- Still many possible searches and observables ⇒ Why?
- What is each observable suited for?
- How are these observables related?
- Can we compare their performances?

How to get an intuition for an optimal search strategy?

The Dissection Problem

The Dissection problem: the ideal result

The Dissection problem: the ideal result

The *n*-body extended simplified models

Many LHC searches do not use kinematic features (edges, etc...)

- ⇒ Ignore intermediate on-shell states
- ⇒ Ignore angular correlations

n-body vs Simplified Models

• Classify the signals using the number of partons

PRODUCTION	Decay Channel	FINAL STATE
$\widetilde{q} \widetilde{q}$	$\widetilde{q} \to q \widetilde{\chi}$	2 partons $+\mathcal{H}_T$
$\widetilde{q} \widetilde{g}$	$ \begin{split} \widetilde{g} &\to q \overline{q} \widetilde{\chi} \\ \widetilde{q} &\to q \widetilde{\chi} \end{split} $	3 partons $+ \mathcal{H}_T$
$\widetilde{g} \widetilde{g}$	$\widetilde{g} \to q \overline{q} \widetilde{\chi}$	4 partons $+ \mathcal{H}_T$
$\widetilde{q} \widetilde{g}$	$ \begin{split} \widetilde{g} &\to q \overline{q} Z^0 \widetilde{\chi} \\ \widetilde{q} &\to q \widetilde{\chi} \end{split} $	5 partons $+ \mathcal{H}_T$
$\widetilde{t} \ \widetilde{t}$	$\widetilde{t} \to t \widetilde{\chi}$	6 partons $+ \mathcal{H}_T$
$\widetilde{q} \widetilde{g}$	$ \begin{split} \widetilde{g} &\to t \overline{t} \widetilde{\chi} \\ \widetilde{q} &\to q \widetilde{\chi} \end{split} $	7 partons $+ \mathcal{H}_T$
$\widetilde{g} \widetilde{g}$	$\widetilde{g} \to q \overline{q} Z^0 \widetilde{\chi}$	8 partons + \mathcal{H}_T

Dissection: the ideal result

Observables

```
\left\{ \begin{array}{l} N_{jets} \\ \text{ } & \text{ } \\ \text{ } & \text{ } \\ \text{ } \\ \text{ } & \text{ } \\ \ } \\ \text{ } \\ \ \\ \text{ } \\
```

Dissection: the ideal result

Observable performance: ROC curves

• Use Boosted Decision Trees to study correlated variables

BDT output

Our procedure

Signals

- Uncompressed study: $m_{\chi} = 1$ GeV
- Compressed study: $m_{\chi} = 0.95 m_{\tilde{g}}$

Backgrounds

- QCD: 1-4 jets
- *W*, *Z* + 1-3 jets
- tŦ

Preselection cuts

- MHT > 200 GeV
- $H_T > 500 \text{ GeV}$
- $\Delta \phi_{j_1 j_2} > 0.4$ Meakens the performance of α_T !

Model "ideal" case by throwing all our observables in the BDT

Results: one variable, uncompressed

Individual variable groups

Three main categories of variables

- **Missing energy type**: {MHT, M_{T2}^{CMS} }, sensitive to the invisible "neutralino" states
- Energy scale type: {*H*_T, *M*_{T2}, *M*_R, *m*_{eff}}, sensitive to the overall energy scale of the event
- Energy structure type: {N_{jets}}, sensitive to the structure of the visible energy, here the number of partons

Some "non-beginner" variables probe more than one type \Rightarrow More stable performance over the signal range

• Hybrid variables: $\left\{ R^2, MHT/\sqrt{H_T}, M_J \right\}$

Results: one variable, uncompressed

Results: one variable, uncompressed

Results: combinations of variables

2D: solid lines

3D: thick dashed lines

Uncompressed Signals

- Combinations of two variables of different types are generally insufficient in one regime
- $\{M_{T2}^{CMS}, \sum M_J\}$ does best since $\sum M_J$ is a hybrid variable
- Combining one variable of each type can provide "ideal" coverage for all signals and backgrounds
- The "beginner" variables {*MHT*, *H_T*, *N*_{jets}} capture most of the features of the signal
- Slight improvement possible using M_{T2}^{CMS} and/or $\sum M_J$

Compressed spectra

- Jets from the gluino decay escape detection
- As in the uncompressed case $\{MHT, H_T, N_{jets}\}$ performs best
- Dependence in N_{jets}: ISR from the initial gluons (pair-production of a colored state) ⇒ 2D searches should suffice for "WIMP" states

Compressed spectra

- Jets from the gluino decay escape detection
- As in the uncompressed case {*MHT*, *H_T*, *N*_{jets}} performs best Razor does well here too.
- Dependence in N_{jets}: ISR from the initial gluons (pair-production of a colored state) ⇒ 2D searches should suffice for "WIMP" states

Summary

- The *n*-body extended simplified models allow for a compact representation of the performance of a search in signal space
- Global analysis of the variables used in jets plus MET searches for a wide range of signals
- Combining three variables is enough to cover all the background and signal space
- Consistency of our formalism: need to work on mapping models with cascades to n-body models
- Extend the formalism to more LHC searches: final state vector bosons, leptons, etc...

On-shell intermediate particles

$\tilde{g} \rightarrow q\bar{q}(Z \rightarrow q\bar{q})\tilde{\chi}$ vs 3-parton simplified model

On-shell intermediate particles

$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}$ vs 2-parton simplified model

On-shell intermediate particles

$\tilde{t} \rightarrow t \tilde{\chi}$ vs 1-parton simplified model vs 3-body simplified model

Mass dependence: $Z \rightarrow vv$

Mass dependence: $t\bar{t}$

Mass dependence: QCD

