Higgs Boson Pair Production @ NLO in QCD

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Stephen Jones
Borowka, Greiner, Heinrich, Kerner, Schlenk, Schubert, Zirke

JHEP (2016) 107
PRL 117 (2016) 012001, Erratum 079901
PoS LL2016 (2016) 069

Motivation

Higgs Lagrangian:

$$
\mathcal{L} \supset-V\left(\Phi^{\dagger} \Phi\right), \quad V\left(\Phi^{\dagger} \Phi\right)=-\frac{1}{2} \mu^{2} \Phi^{\dagger} \Phi+\frac{1}{4} \lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

EW symmetry breaking

$$
\frac{m_{H}^{2}}{2} H^{2}+\frac{m_{H}^{2}}{2 v} H^{3}+\frac{m_{H}^{2}}{8 v^{2}} H^{4}
$$

Higgs pair production probes triple-Higgs coupling

Production Channels

Gluon Fusion

Vector Boson Fusion (VBF)

NLO [1,2] NNLO [3]

+ non-negligible contribution from $g g \rightarrow H H j j$ LO [5]

Top-Quark Associated NLO [2]

Higgs-strahlung

NLO [1,2] NNLO [1,4]

[1] Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12;
Baglio, Djouadi et al. 12
[2] Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro 14;
[3] Ling, Zhang, Ma, Guo, Li, Li 14 [4] Li, Wang 16
[5] Dolan, Englert, Greiner, Nordstrom, Spannowsky 15;

Higgs EFT

H(iggs)EFT: $m_{T} \rightarrow \infty$
Effective tree-level couplings between gluons and Higgs
Lowers number of loops by 1

HEFT valid for

$$
\sqrt{\hat{s}} \ll 2 m_{T}
$$

HH production for

$$
2 m_{H}<\sqrt{\hat{s}}
$$

Small energy range in which HEFT is technically justified

Born improved NLO HEFT:

$$
\mathrm{d} \sigma_{\mathrm{NLO}}\left(m_{T}\right) \approx \mathrm{d} \bar{\sigma}_{\mathrm{NLO}}\left(m_{T}\right) \equiv \frac{\mathrm{d} \sigma_{\mathrm{NLO}}\left(m_{T} \rightarrow \infty\right)}{\mathrm{d} \sigma_{\mathrm{LO}}\left(m_{T} \rightarrow \infty\right)} \mathrm{d} \sigma_{\mathrm{LO}}\left(m_{T}\right)
$$

Gluon Fusion

1. LO (1-loop), Dominated by top (bottom $<1 \%$) Glover, van der Bij 88

2. Born Improved NLO H(iggs)EFT $m_{T} \rightarrow \infty \mathrm{~K} \approx 2$ Dawson, Dittmaier, Spira 98
A. Including m_{T} in Real radiation
B. Including $\mathcal{O}\left(1 / m_{T}^{12}\right)$ terms in Virtual MEs $\pm 10 \%$ Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff 14;
Grigo, Hoff, Steinhauser 15
3. NLO (2-loop) with full top mass \leftarrow this talk Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16
(Transverse momentum) NLL + NLO
 Ferrera, Pires 16

Gluon Fusion (II)

4. Born Improved NNLO HEFT +20\% De Florian, Mazzitelli 13

Including matching coefficients
Grigo, Melnikov, Steinhauser 14
Including terms $\mathcal{O}\left(1 / m_{T}^{4}\right)$ in Virtual MEs Grigo, Hoff, Steinhauser 15
(Threshold) NNLL + NNLO Matching +9\%
 (SCET) Shao, Li, Li, Wang 13; de Florian, Mazzitelli 15
5. NNLO HEFT (Differential)
de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16

NLO Calculation

Virtual MEs: $\quad g g \rightarrow H H \quad q \bar{q} \rightarrow H H \longleftarrow$ NNLO

Self-coupling (≤ 3-point)

Integrals Known

$$
g g \rightarrow H
$$

Spira, Djouadi et al. 93, 95;
Bonciani, P. Mastrolia 03,04;
Anastasiou, Beerli et al. 06;

Many integrals not known analytically, except:
$H \rightarrow Z \gamma$ Bonciani, Del Duca, Frellesvig et al. 15; Gehrmann, Guns, Kara 15;

Form Factor Decomposition

Expose tensor structure: $\mathcal{M}=\epsilon_{\mu}^{1} \epsilon_{\nu}^{2} \mathcal{M}^{\mu \nu}$

Form Factors (Contain integrals)

$$
\mathcal{M}^{\mu \nu}=F_{1}\left(\hat{s}, \hat{t}, m_{h}^{2}, m_{t}^{2}, D\right) T_{1}^{\mu \nu}+F_{2}\left(\hat{s}, \hat{t}, m_{h}^{2}, m_{t}^{2}, D\right) T_{2}^{\mu \nu}
$$

(Tensor) Basis, built from external momenta \& metric
Choose: $\quad \mathcal{M}^{++}=\mathcal{M}^{--}=-F_{1}$

$$
\mathcal{M}^{+-}=\mathcal{M}^{-+}=-F_{2}
$$

Glover, van der Bij 88

Construct projectors such that:

$$
\begin{aligned}
P_{1}^{\mu \nu} \mathcal{M}_{\mu \nu} & =F_{1}\left(\hat{s}, \hat{t}, m_{h}^{2}, m_{t}^{2}, D\right) \\
P_{2}^{\mu \nu} \mathcal{M}_{\mu \nu} & =F_{2}\left(\hat{s}, \hat{t}, m_{h}^{2}, m_{t}^{2}, D\right)
\end{aligned}
$$

Integral Reduction

Tensor integrals rewritten as inverse propagators
Scalar products:

$$
S=\frac{l(l+1)}{2}+l m
$$

$$
l=2 \quad \# \text { Loops }
$$

$$
m=3 \quad \# \text { L.I External momenta }
$$

$$
S=9
$$

4 scales $\hat{s}, \hat{t}, m_{T}^{2}, m_{H}^{2}$
Choose 5 planar +3 non-planar integral families
Reduction with REDUZE 2

Integrals	1-loop	2-loop
Direct	63	9865
+ Symmetries	21	1601
+ IBPs	8	$\sim 260-270$ (currently 327)

Up to 4 inverse propagators
Simplification, fix:

$$
m_{T}=173 \mathrm{GeV}, m_{H}=125 \mathrm{GeV}
$$

(Mostly) Finite Basis
Panzer 14; von Manteuffel, Panzer, Schabinger 15
Non-planar integrals computed mostly without reduction

Amplitude Evaluation

All master integrals processed with SecDec
Borowka, Heinrich, Jahn,
SJ, Kerner, Schlenk, Zirke
Sector decompose Feynman integrals Hepp 66; Denner, Roth 96; Binoth, Heinrich 00
Contour deformation Soper 00; Binoth, Guillet, Heinrich et al. 05; Nagy, Soper 06;
Borowka et al. 12
Use Quasi-Monte-Carlo (QMC) integration $\mathcal{O}\left(n^{-1}\right)$ error scaling Review: Dick, Kuo, Sloan 13; Li, Wang, Yan, Zhao 15
Implemented in OpenCL, evaluated on GPUs
Entire 2-loop amplitude evaluated with a single code

$$
\begin{aligned}
F=\sum_{i}\left(\sum_{j} C_{i, j} \epsilon^{j}\right) \\
\text { coeff. }
\end{aligned}\left(\begin{array}{rl}
\left.\sum_{k} I_{i, k} \epsilon^{k}\right) & =\epsilon^{-2}\left[C_{1,-2}^{(L)} I_{1,0}^{(L)}+\ldots\right] \\
& +\epsilon^{-1}\left[C_{1,-1}^{(L)} I_{1,0}^{(L)}+\ldots\right]+\ldots
\end{array}\right. \text { compute once }
$$

Dynamically set target precision for each sector, minimising time:

$$
T=\sum_{i} t_{i}+\bar{\lambda}\left(\sigma^{2}-\sum_{i} \sigma_{i}^{2}\right), \quad \sigma_{i} \sim t_{i}^{-e}
$$

$$
\begin{aligned}
\bar{\lambda} & - \text { Lagrange multiplier } \\
\sigma & - \text { precision goal } \\
\sigma_{i} & - \text { error estimate }
\end{aligned}
$$

Phase-space Sampling

Phase-Space Point Distribution

1) VEGAS algorithm applied to LO calculation; $\mathcal{O}(100 k)$ events computed
2) unweighted LO events using accept/reject method; $\mathcal{O}(30 k)$ events remain
3) Randomly select $917+150$ events, compute at NLO, exclude 4+1

Accuracy goal: 3\% for F_{1}
 5-20\% for F_{2} (depending on F_{2} / F_{1})

GPU Time/PS point: 80 min-2d (=wall-clock limit) median 2 h

Additional 1488 events now on disk (not used yet)

Results: Invariant Mass

PDF4LHC15_nlo_30_pdfas
$m_{H}=125 \mathrm{GeV}$
$m_{T}=173 \mathrm{GeV}$
Uncertainty:
$\mu_{0}=\frac{m_{H H}}{2}$
$\mu_{R, F} \in\left[\frac{\mu_{0}}{2}, 2 \mu_{0}\right] \quad(7-$ point $)$
HEFT: Outside scale var.

$$
m_{h h}>420 \mathrm{GeV}
$$

FTapp: Outside scale var. $m_{h h}>620 \mathrm{GeV}$

HEFT overestimates by 16%
FTap. overestimates by 4\%

Full Theory $|$| | $19.85_{-20.5 \%}^{+27.6 \%}$ | $32.91_{-12.6 \%}^{+13.6 \%} \pm \mathbf{0 . 3} \%$ (stat.) $\pm \mathbf{0 . 1} \%$ (int.) |
| :--- | :--- | :--- |

Results: pT either Higgs

HEFT: Can poor approx. for larger $p_{T, h}$

Note: ambiguous how to rescale HEFT reals by full LO born differentially

FTapp: Significantly better but still overestimating

Real radiation plays larger role for large $p_{T, h}$
(As hoped) Including full reals does improve over HEFT in tails

Results: 100TeV

	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$	
B.I. HEFT	-	$1511_{-13.0 \%}^{+16.0 \%}$	HEFT overestimates by 32\%
FTapprox	-	$1220_{-10.9 \%}^{+1.9 \%}$	FTap. overestimates by 6%
Full Theory	$731.3_{-15.9 \%}^{+20.9 \%}$	$1149_{-10.0 \%}^{+10.8 \%}$	

Difference between full theory and HEFT more pronounced

Comparison to Expansion

Can compare just virtual ME to expansion:

$$
d \hat{\sigma}_{N}=\sum_{\rho=0}^{N} d \hat{\sigma}^{(\rho)}\left(\frac{\Lambda}{m_{t}}\right)^{2 \rho} \quad \Lambda \in\left\{\sqrt{\hat{s}}, \sqrt{\hat{t}}, \sqrt{\hat{u}}, m_{h}\right\}
$$

$$
V_{N}=\left(d \hat{\sigma}_{N}^{V}+d \hat{\sigma}_{N}^{L O} \otimes \mathbf{I}\right)
$$

$$
V_{N}^{\prime}=V_{N} \frac{d \hat{\sigma}^{L O}}{d \hat{\sigma}_{N}^{L O}}
$$

Rescaled better but does not describe full above threshold

Expansion converges on full $\sqrt{\hat{s}}<2 m_{T}$

$\mathrm{V}_{\mathrm{N} \geq 4}$ thanks to J . Hoff

Grigo, Hoff, Steinhauser 15

Triple-Higgs Coupling Sensitivity

Note: Just varying λ : one "direction"' in EFT parameter space

SM: Destructive interference between $g_{h h h}$ and y_{T}^{2} contrib.

Quadratic dependence on λ (at LO in λ)

Distributions: can help to distinguish between λ values that give same total crosssection

NLO Improved NNLO HEFT

First attempt to combine full NLO
Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16
$+$
NNLO HEFT (Differential)
de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16

$$
\frac{\mathrm{d} \sigma^{\text {approx. }}}{\mathrm{d} m_{h h}} \equiv \frac{\mathrm{~d} \sigma_{\mathrm{NLO}}}{\mathrm{~d} m_{h h}} \times \frac{\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{HEFT}} / \mathrm{d} m_{h h}}{\mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{HEFT}} / \mathrm{d} m_{h h}}
$$

Bin-by-bin rescaling of NLO by NNLO HEFT K-factor

$$
\sigma^{\text {approx. }}=38.67_{-7.6 \%}^{+5.2 \%}
$$

Conclusion

Gluon Fusion

- Key measurement for probing the self coupling (HL-LHC era)
- NLO deviates from Born Improved HEFT
-14% @ $14 \mathrm{TeV},-24 \%$ @ 100 TeV
- Distributions altered significantly

Future

- Fully differential/improved combination with NNLO HEFT
- Grid (faster evaluation of virtuals)
- Parton Shower: POWHEG, MG5_aMC@NLO, Herwig, Sherpa
- EFT/2HDM analysis (?)
- Apply methods/framework GoSam-2L+SecDec to other processes

Thank you for listening!

Backup

NLO Improved NNLO HEFT (II)

Total Cross Section @ 14 TeV

	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$	$\sigma_{\text {NNLO }}(\mathrm{fb})$	
HEFT	$17.07_{-22.2 \%}^{+3.9 \%}$	$31.93_{-15.6 \%}^{+17.2 \%}$	$37.52_{-7.6 \%}^{+5.2 \%}$	PDF4LHC15_nlo_30_pdfas $m_{H}=125 \mathrm{GeV}$
B.I. HEFT	$19.85{ }_{-20.5}^{+27.6}$	$38.32_{-14.9 \%}^{+18.1 \%}$	$43.63_{-7.6 \%}^{+5.2 \%} *$	$m_{T}=173 \mathrm{GeV}$
FTapprox	$19.85_{-20.5 \%}^{+27.6 \%}$	$34.26_{-13.2 \%}^{+14.7 \%}$	-	Uncertainty:
Full Theory	$19.85{ }_{-20.5 \%}^{+27.6 \%}$	$32.91_{-12.6 \%}^{+13.6 \%}$		
N.I. HEFT	-	$32.91_{-12.6 \%}^{+13.6 \%}$	$38.67_{-7.6 \%}^{+5.2 \% *}$	$\mu \in\left[\frac{\lambda^{2}}{2}, 2 \mu_{0}\right] \quad(7-$ point $)$

* re-weighted on total cross-section level
de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16;
Maltoni, Vryonidou, Zaro 14 (recalculated by us); Borowka, Greiner, Heinrich, Kerner, Schlenk, Schubert, Zirke 16;
Dawson, Dittmaier, Spira 98 (recalculated by us); Glover, van der Bij 88 (recalculated by us)

Comparison to Full Theory

	$\Delta \sigma_{\mathrm{LO}}^{\mathrm{Full}}$	$\Delta \sigma_{\mathrm{NLO}}^{\mathrm{Full}}$
HEFT	-14%	-3.0%
B.I. HEFT	0%	$+16 \%$
FTapprox	0%	$+4.1 \%$

Can do a similar exercise @ 100 TeV , differences typically larger

YR4 Numbers

YR4 Prescription:

$$
\begin{gathered}
\sigma(g g \rightarrow h h)_{N L O}^{e x a c t}=\sigma(g g \rightarrow h h)_{N L O}^{H E F T}\left(1+\delta_{t}\right) \\
\sigma_{N N L L}^{\prime}=\sigma_{N N L L}+\delta_{t} \sigma_{N L O}^{H E F T}
\end{gathered}
$$

\sqrt{s}	$\sigma_{\text {NNLL }}^{\prime}(\mathrm{fb})$	Scale Unc. (\%)	PDF Unc. (\%)	α_{S} Unc. (\%)
7 TeV	7.078	$+4.0-5.7$	± 3.4	± 2.8
8 TeV	10.16	$+4.1-5.7$	± 3.1	± 2.6
13 TeV	33.53	$+4.3-6.0$	± 2.1	± 2.3
14 TeV	39.64	$+4.4-6.0$	± 2.1	± 2.2

Checks

Real Emission \& Catani-Seymour Subtraction Terms Catani, Seymour 96

Independence of dipole cut parameter Nagy 03
Real + HEFT agrees with MG5_AMC@NLO
Maltoni, Vryonidou, Zaro 14

Virtual Corrections

2 calculations of unreduced amplitude
2 calculations of mass renormalization (CT vs $\mathrm{d} \mathcal{M}^{\mathrm{LO}} / \mathrm{d} m_{T}^{2}$ numerically)
(Some) integrals cross-checked with VEGAS Lepage 80; Hahn (Cuba)
Amplitude invariant under crossing
Numerical pole cancellation (5 digits)
Single Higgs production part agrees with SusHi Harlander, Liebler,
Mantler 13,16;
$1 / m_{T}$ result converges to full result below top threshold
Grigo, Hoff, Steinhauser 15

A. FT approx

Distribution: Agreement between HEFT approximations in first bin where $\sqrt{\hat{s}} \approx 2 m_{H}$, not much hard real emission

	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$
B.I. HEFT	$19.85_{-20.5 \%}^{+27.6 \%}$	$38.32_{-14.1 \%}^{+18.1 \%}$
FTapprox	$19.85_{-20.6 \%}^{+27.5 \%}$	$34.26_{-13.2 \%}^{+14.7 \%}$
Full Theory	$19.85_{-20.5 \%}^{+27.6 \%}$	\ldots

Total: m_{T} in only reals suppresses XS by 11\% compared to HEFT

B. Expansion in Top Quark Mass

Low $m_{h h}$: Expansion seems ok in first bin

$$
\sqrt{\hat{s}}<2 m_{T}
$$

Increasing $m_{h h}$: Fewer reasons to trust expansion

Total: $\mathcal{O}(5 \%)$ differences between first few terms of expansion
(Tom Zirke) Virtuals: asymptotic expansion in $1 / m_{T}^{2}$ (q2e/exp+ Reduze + matad)
Harlander, Seidensticker, Steinhauser 97,99; von Manteuffel, Studerus 12; Steinhauser 00
Mass effects give large uncertainty Required NLO calculation with full mass dependence

	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$
HEFT	$17.07_{-22.9 \%}^{+30.9 \%}$	$31.93_{-15.2 \%}^{+17.6 \%}$
B.I. HEFT	$19.85_{-20.6 \%}^{+27.5 \%}$	$38.32_{-14.9 \%}^{+18.1 \%}$
Full Theory	$19.85_{-20.5 \%}^{+20.6 \%}$	\ldots

NLO: HEFT indicates

$$
K \approx 2
$$

Born Improved NLO QCD HEFT

$$
\mathrm{d} \sigma_{\mathrm{NLO}}\left(m_{T}\right) \approx \mathrm{d} \bar{\sigma}_{\mathrm{NLO}}\left(m_{T}\right) \equiv \frac{\mathrm{d} \sigma_{\mathrm{NLO}}\left(m_{T} \rightarrow \infty\right)}{\mathrm{d} \sigma_{\mathrm{LO}}\left(m_{T} \rightarrow \infty\right)} \mathrm{d} \sigma_{\mathrm{LO}}\left(m_{T}\right)
$$

$K \approx 2$

A. FTapprox
Maltoni et al. 14
$\mathrm{~d} \bar{\sigma}^{V}\left(m_{T}\right)$
$\mathrm{d} \sigma^{R}\left(m_{T}\right)$
-10%

B. Expansion

Grigo, Hoff, Steinhauser 15
$\mathrm{d} \hat{\sigma}\left(m_{T}\right) \equiv \mathrm{d} \sigma_{0}+\mathrm{d} \sigma_{1} \frac{m_{H}^{2}}{m_{T}^{2}}+\ldots+\mathrm{d} \sigma_{6} \frac{m_{H}^{12}}{m_{T}^{12}}$
$\mathrm{d} \bar{\sigma}_{\mathrm{NLO}}^{S V}\left(m_{T}\right) \equiv \mathrm{d} \hat{\sigma}_{\mathrm{NLO}}^{S V}\left(m_{T}\right) \frac{\mathrm{d} \sigma_{\mathrm{LO}}^{V}\left(m_{T}\right)}{\mathrm{d} \hat{\sigma}_{\mathrm{LO}}^{V}\left(m_{T}\right)}$
$\mathrm{d} \bar{\sigma}_{\mathrm{NLO}}^{H}\left(m_{T}\right) \equiv \mathrm{d} \hat{\sigma}_{\mathrm{NLO}}^{H}\left(m_{T}\right) \frac{\sigma_{\mathrm{LO}}^{V}\left(m_{T}\right)}{\hat{\sigma}_{\mathrm{LO}}^{V}\left(m_{T}\right)}$
$\pm 10 \%$

Top-quark Width Effects

Total XS @ LO: reduced by 2\% by including top-quark width

Figure 3: Top width effect on the one-loop (Born) matrix element squared for $g g \rightarrow H H$. The results for $\Gamma_{t}=0$ and 1.5 GeV are shown along with the corresponding ratio.

Maltoni, Vryonidou, Zaro 14

Lambda Variation

Lambda Variation

Scaling

$$
\sqrt{s}=14 \mathrm{TeV}
$$

Lambda $0 \times$ SM

$$
\sqrt{s}=14 \mathrm{TeV}
$$

Lambda $2 \times$ SM

$$
\sqrt{s}=14 \mathrm{TeV}
$$

Lambda 5 x SM

$$
\sqrt{s}=14 \mathrm{TeV}
$$

Amplitude Structure

$\overline{\mathrm{MS}}$ scheme strong coupling a and OS top-quark mass:

$$
\begin{aligned}
\mathrm{F} & =a \mathrm{~F}^{(1)}+a^{2}\left(\delta Z_{A}+\delta Z_{a}\right) \mathrm{F}^{(1)}+a^{2} \delta m_{t}^{2} \mathrm{~F}^{c t,(1)}+a^{2} \mathrm{~F}^{(2)}+O\left(a^{3}\right) \\
\mathrm{F}^{(1)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\epsilon}\left[b_{0}^{(1)}+b_{1}^{(1)} \epsilon+b_{2}^{(1)} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)\right] \longleftarrow \text {-loop } \\
\mathrm{F}^{c t,(1)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\epsilon}\left[c_{0}^{(1)}+c_{1}^{(1)} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right] \longleftarrow \text { Mass Counter-Terms } \\
\mathrm{F}^{(2)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{2 \epsilon}\left[\frac{b_{-2}^{(2)}}{\epsilon^{2}}+\frac{b_{-1}^{(2)}}{\epsilon}+b_{0}^{(2)}+\mathcal{O}(\epsilon)\right] \longleftarrow \text { 2-loop }
\end{aligned}
$$

Red terms contain integrals, computed numerically at each PS point, not re-evaluated for scale variations

Real Radiation ($\mathrm{HH}+\mathrm{j} . .$.):

$$
\begin{array}{ll}
g g \rightarrow H H+g & g \bar{q} \rightarrow H H+\bar{q} \\
q \bar{q} \rightarrow H H+g & g q \rightarrow H H+q
\end{array}
$$

GoSam for MEs Cullen et al. 14
Catani-Seymour Dipole Subtraction Catani, Seymour 96

Parametrise non-resonant new physics with EFT (5 parameters):

Azatov, Contino, Panico, Son 15;
(Cluster analysis) Dall’Osso, Dorigo, Gottardo, Oliveira, Tosi, Goertz 15; + Carvalho, Manzano, Dorigo, Gouzevich 16;

(B.I. HEFT) Gröber, Mühlleitner, Spira, Streicher 15;

Amplitude Evaluation (II)

Contributing integrals:

Rank 1 Shifted Lattices

$\mathcal{O}\left(n^{-1}\right)$ algorithm for numerical integration:
Review: Dick, Kuo, Sloan 13
$I_{s}[f] \equiv \int_{[0,1]^{s}} \mathrm{~d}^{s} x f(\vec{x}) \quad I_{s}[f] \approx \bar{Q}_{s, n, m}[f] \equiv \frac{1}{m} \sum_{k=1}^{m} \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i \vec{z}}{n}+\vec{\Delta}_{k}\right\}\right)$
$f: \mathbb{R}^{s} \rightarrow \mathbb{C}$
\vec{z} - Generating vec.
$\overrightarrow{\Delta_{k}}$ - Random shift vec.
\{\} - Fractional part
n - \# Lattice points
m - \# Random shifts

Generating vector \vec{z} precomputed for a fixed number of lattice points, chosen to minimise worst-case error Nuyens 07

Rank 1 Shifted Lattices (II)

Unbiased error estimate computed from random shifts:

$$
\operatorname{Var}\left[\bar{Q}_{s, n, m}[f]\right] \approx \frac{1}{m(m-1)} \sum_{k=1}^{m}\left(Q_{s, n, k}-\bar{Q}_{s, n, m}\right)^{2}
$$

Typically 10-50 shifts, production run: 20 shifts

R1SL: Algorithm Performance

Example: Rel. Err. of one sector of sector decomposed loop integral

R1SL: Implementation Performance

Accuracy limited primarily by number of function evaluations

 Implemented in OpenCL 1.1 for CPU \& GPU, generate points on GPU/ CPU core, sum blocks of points (reduce memory usage/transfers)

2 CPUs (20 Cores +HT)

n			C/G
655357	6.63	1.60	4.1
7208951	72.3	16.4	4.4
67264993	674.2	152.2	4.4

Current Experimental Limits

Decay Ch.	B.R.	95% Excl.	Analysis $\left(\left[f b^{-1}\right], \sqrt{s}[\mathrm{TeV}]\right)$
$b b b b$	33%	$<29 \cdot \sigma_{\mathrm{SM}}$	ATLAS-CONF-2016-017 (3.2,13)
			ATLAS-CONF-2016-049 (13.3,13)
$b \bar{b} W W$	25%	-	-
$b \bar{b} \tau \tau$	7.3%	$<200 \cdot \sigma_{\mathrm{SM}}$	CMS PAS HIG-16-012 (2.7,13)
			CMS PAS HIG-16-028 (12.9,13)
$b \bar{b} Z Z$	3.0%	-	CMS PAS HIG-15-013 (18.3,8)
$W W \tau \tau$	2.71%	-	-
$W W Z Z$	1.13%	-	-
$b \bar{b} \gamma \gamma$	0.26%	$<3.9 p b$	ATLAS-CONF-2016-004 (3.2,13)
		$<74 \cdot \sigma_{\mathrm{SM}}$	CMS-HIG-13-032 (19.7,8)
$\gamma \gamma \gamma \gamma$	0.001%	-	-
$b b V V(\rightarrow l \nu l \nu)$	1.23%	$400 \cdot \sigma_{\mathrm{SM}}$	CMS PAS HIG-16-024 (2.3,13)
$\gamma \gamma W W^{*}(\rightarrow l \nu j j)$	-	$<25 p b$	ATLAS-CONF-2016-071 (13.3,13)
Comb Ch.	-	$<70 \cdot \sigma_{\mathrm{SM}}$	ATLAS arXiv:1509.04670v2 (20.3,8)

Future Experimental Prospects

HL-LHC (14 TeV)

ATLAS+CMS bbүY + bbтt: Expected significance 1.9 sigma
CERN-LHCC-2015-10
ATLAS bbyץ: Signal significance 1.3 sigma ATL-PHYS-PUB-2014-019

ATLAS bbTt: Signal significance 0.6 sigma ATL-PHYS-PUB-2015-046

FCC (100 TeV)

This rate is expected to provide a clear signal in the $H H \rightarrow(b \bar{b})(\gamma \gamma)$ channel and to allow determination of $\lambda_{3 H}$ with an accuracy of $30-40 \%$ with a luminosity of $3 \mathrm{ab}^{-1}$, and of $5-10 \%$ with a luminosity of 30 ab^{-1} [497-499]. A rare decay channel which is potentially interesting is $H H \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 l)$, with a few expected signal events against $\mathcal{O}(10)$ background events at $3 \mathrm{ab}^{-1}$ [500].

Production Channels (II)

$$
\sigma(p p \rightarrow H H+X) \sim \frac{1}{1000} \sigma(p p \rightarrow H+X)
$$

${ }^{1}$ NLO OCD HEFT HPAIR
${ }^{2}$ NLO QCD VBFNLO
${ }^{3} \mathrm{LO} \mathrm{QCD}(\mathrm{NLO}$, aMC@NLO)
${ }^{4}$ NNLO QCD

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12

Resonant Production

YR4 details two benchmark scenarios for initial study

Higgs Singlet Model

$V=-m^{2} \Phi^{\dagger} \Phi-\mu^{2} S^{2}+\lambda_{1}\left(\Phi^{\dagger} \Phi\right)^{2}+\lambda_{2} S^{4}+\lambda_{3} \Phi^{\dagger} \Phi S^{2}$

$$
\begin{aligned}
\Phi^{T} & =\left(\phi^{+}, \tilde{\phi}_{0}=\frac{\phi_{0}+v}{\sqrt{s}}\right) \\
S & =\frac{s+\langle S\rangle}{\sqrt{2}}
\end{aligned}
$$

Large $\mathcal{O}(20-30 \%) H \rightarrow h h$
Cross-section can be enhanced by up to 10-20x

2 Higgs Doublet Model (2HDM)

$$
\begin{aligned}
2 \text { neutral scalars } \rightarrow & h^{0}, H^{0}, A, H^{+}, H^{-} \longleftarrow 2 \text { charged Higgs } \\
& \text { Pseudoscalar }
\end{aligned}
$$

Behaviour strongly depends on the scenario
Hespel, López-Val, Vryonidou 14

Integral Families

 tensor integrals: scalar products \rightarrow inverse propagators\# l.i. scalar products:
Slide: Matthias Kerner

$$
S=\frac{l(l+1)}{2}+l m \quad \begin{array}{ll}
l=2: & \text { \# loops } \\
m=3: & \text { \# l.i. external momenta }
\end{array} \Rightarrow \quad S=9
$$

\rightarrow integral families with 9 propagators
\rightarrow general loop integral:

$$
I_{\nu_{1}, \ldots, \nu_{9}}^{\mathrm{fam}_{j}}=\int \mathrm{d}^{d} p_{1} \int \mathrm{~d}^{d} p_{2} \frac{1}{D_{1}^{\nu_{1}} D_{2}^{\nu_{2}} \cdots D_{9}^{\nu_{9}}} \quad \nu_{i} \in \mathbb{Z}
$$

planar family 1 :

$$
\begin{aligned}
& D_{1}=p_{1}^{2}-m_{t}^{2} \\
& D_{2}=p_{2}^{2}-m_{t}^{2} \\
& D_{3}=\left(p_{1}-p_{2}\right)^{2} \\
& D_{4}=\left(p_{1}+k_{1}\right)^{2}-m_{t}^{2} \\
& D_{5}=\left(p_{2}+k_{1}\right)^{2}-m_{t}^{2} \\
& D_{6}=\left(p_{1}-k_{2}\right)^{2}-m_{t}^{2} \\
& D_{7}=\left(p_{2}-k_{2}\right)^{2}-m_{t}^{2} \\
& D_{8}=\left(p_{1}-k_{2}-k_{3}\right)^{2}-m_{t}^{2} \\
& D_{9}=\left(p_{2}-k_{2}-k_{3}\right)^{2}-m_{t}^{2}
\end{aligned}
$$

Integral Families

 tensor integrals: scalar products \rightarrow inverse propagators\# l.i. scalar products:
Slide: Matthias Kerner

$$
S=\frac{l(l+1)}{2}+l m \quad \begin{array}{ll}
l=2: & \text { \# loops } \\
m=3: & \text { \# l.i. external momenta }
\end{array} \Rightarrow \quad S=9
$$

\rightarrow integral families with 9 propagators

3 non-planar families:

Form Factor Decomposition (II)

$$
\begin{array}{lr}
T_{1}^{\mu \nu}=g^{\mu \nu}-\frac{p_{2}^{\mu} p_{1}^{\nu}}{p_{1} \cdot p_{2}} & p_{T}^{2}=\frac{u t-m_{H}^{4}}{s} \\
T_{2}^{\mu \nu}=g^{\mu \nu}+\frac{m_{H}^{2} p_{2}^{\mu} p_{1}^{\nu}}{p_{T}^{2} p_{1} \cdot p_{2}}-\frac{2 p_{1} \cdot p_{3} p_{2}^{\mu} p_{3}^{\nu}}{p_{T}^{2} p_{1} \cdot p_{2}}-\frac{2 p_{2} \cdot p_{3} p_{3}^{\mu} p_{1}^{\nu}}{p_{T}^{2} p_{1} \cdot p_{2}}+\frac{2 p_{3}^{\mu} p_{3}^{\nu}}{p_{T}^{2}}
\end{array}
$$

Glover, van der Bij 88
Projectors (CDR $D=4-2 \epsilon)$:

$$
\begin{aligned}
& P_{1}^{\mu \nu}=\frac{1}{4} \frac{D-2}{D-3} T_{1}^{\mu \nu}-\frac{1}{4} \frac{D-4}{D-3} T_{2}^{\mu \nu} \\
& P_{2}^{\mu \nu}=-\frac{1}{4} \frac{D-4}{D-3} T_{1}^{\mu \nu}+\frac{1}{4} \frac{D-2}{D-3} T_{2}^{\mu \nu}
\end{aligned}
$$

Same Basis as amplitude

Compute:

$$
\begin{aligned}
P_{1}^{\mu \nu} \mathcal{M}_{\mu \nu} & =F_{1}\left(\hat{s}, \hat{t}, m_{h}^{2}, m_{t}^{2}, D\right) \\
P_{2}^{\mu \nu} \mathcal{M}_{\mu \nu} & =F_{2}\left(\hat{s}, \hat{t}, m_{h}^{2}, m_{t}^{2}, D\right)
\end{aligned}
$$

Virtual MEs: Tool Chain

Partial cross-check: 2 Implementations

Master Integrals

Known Analytically:

Gehrmann, Guns, Kara 15

3-point, 2 off-shell legs
Generalized HPLs, 12 Letters

Numeric Evaluation:

Numerical Master Integrals

To evaluate Master Integrals we use SecDec which implements Sector Decomposition

Completely automated procedure

Sector Decomposition

1) Feynman Parametrise integral and compute momentum integrals

$$
G=(-1)^{N_{\nu}} \frac{\Gamma\left(N_{\nu}-L D / 2\right)}{\prod_{j=1}^{N} \Gamma\left(\nu_{j}\right)} \int_{0}^{\infty} \prod_{j=1}^{N} \mathrm{~d} x_{j} x_{j}^{\nu_{j}-1} \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{\mathcal{U}^{N_{\nu}-(L+1) D / 2}(\vec{x})}{\mathcal{F}^{N_{\nu}-L D / 2}\left(\vec{x}, s_{i j}\right)}
$$

Here \mathcal{U}, \mathcal{F} are 1st, 2nd Symanzik Polynomials
We have exchanged L momentum integrals for N parameter integrals

Sector Decomposition

2) After integrating out δ we are faced with integrals of the form:

$$
\begin{gathered}
G_{i}=\int_{0}^{1}\left(\prod_{j=1}^{N-1} \mathrm{~d} x_{j} x_{j}^{\nu_{j}-1}\right) \frac{\mathcal{U}_{i}(\vec{x})^{\operatorname{expo} \mathcal{U}(\epsilon)} \longleftarrow}{\mathcal{F}_{i}\left(\vec{x}, s_{i j}\right)^{\operatorname{expo} \mathcal{F}(\epsilon)}} \text { Powers depending on } \epsilon \\
\uparrow \\
\text { Polynomials in F.P }
\end{gathered}
$$

Which may contain overlapping singularities which appear when several $x_{j} \rightarrow 0$ simultaneously (corresponding to UV/IR singularities) Sector decomposition maps each integral into integrals of the form:

$$
G_{i k}=\int_{0}^{1}\left(\prod_{j=1}^{N-1} \mathrm{~d} x_{j} x_{j}^{a_{j}-b_{j} \epsilon}\right) \frac{\mathcal{U}_{i k}(\vec{x})^{\operatorname{expo} \mathcal{U}(\epsilon)}}{\mathcal{F}_{i k}\left(\vec{x}, s_{i j}\right)^{\operatorname{expo} \mathcal{F}(\epsilon)}}
$$

$\mathcal{U}_{i k}(\vec{x})=1+u(\vec{x})$
Singularity structure can be read off $\mathcal{F}_{i k}(\vec{x})=-s_{0}+f(\vec{x}) \longleftrightarrow u(\vec{x}), f(\vec{x})$ have no constant term
Hepp 66; Denner, Roth 96; Binoth, Heinrich 00

Sector Decomposition (II)

One technique Iterated Sector Decomposition repeat:
$\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}} \longleftarrow$ Overlapping singularity for $x_{1}, x_{2} \rightarrow 0$
$=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}}\left(\theta\left(x_{1}-x_{2}\right)+\theta\left(x_{2}-x_{1}\right)\right)$
$=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{x_{1}} \mathrm{~d} x_{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} x_{2} \int_{0}^{x_{2}} \mathrm{~d} x_{1} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}}$
$=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} t_{2} \frac{x_{1}}{\left(x_{1}+x_{1} t_{2}\right)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} x_{2} \int_{0}^{1} \mathrm{~d} t_{1} \frac{x_{2}}{\left(x_{2} t_{1}+x_{2}\right)^{2+\epsilon}}$
$=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} t_{2} \frac{x_{1}^{-1-\epsilon}}{\left(1+t_{2}\right)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} x_{2} \int_{0}^{1} \mathrm{~d} t_{1} \frac{x_{2}^{-1-\epsilon} \longleftarrow \text { Singularities factorised }}{\left(t_{1}+1\right)^{2+\epsilon}}$
If this procedure terminates depends on order of decomposition steps
An alternative strategy Geometric Sector Decomposition always terminates; both strategies are implemented in SecDec.
Kaneko, Ueda 10; See also: Bogner, Weinzierl 08; Smirnov, Tentyukov 09

Sector Decomposition (III)

3) Expand in ϵ (simple case $a=-1$):

$$
\int_{0}^{1} \mathrm{~d} x^{-1-b \epsilon} g(x)=\frac{g(0)}{-b \epsilon}+\int_{0}^{1} \mathrm{~d} x x^{-b \epsilon}\left[\frac{g(x)-g(0)}{x}\right] \longleftarrow \text { Finite }
$$

Note: `subtraction' of $g(0)$
By Definition: $g(0) \neq 0, g(0)$ finite
4) Numerically integrate

SecDec supports: numerators, inverse propagators, "dots", physical kinematics, arbitrary loops \& legs (within reason)

Key Point: Sector Decomposed integrals can be expanded in ϵ and numerically integrated

SecDec as a Library

Single program to compute all coefficients \& integrals to obtain amplitude to given accuracy

name \& reference to
vector of coefficients
);
// coeffs/coeff204.cpp
si.addTerm(
string("ReduzeF3L2diminc2_131010100ord1"), $C_{1,-2}, C_{1,-1}, \ldots$ for all Form Factors, evaluated at this
phase-space point

Find contour
deformation (physical region) in parallel for all integrals in amplitude

ReduzeF3L2diminc2_131010100ord1nfunc(), crossing,
\&ReduzeF3L2diminc2_131010100ord1Integrand, \&ReduzeF3L2diminc2_1310101000 rd1findoptlam, ReduzeF3L2diminc2_131010100ord1ndim(), params, termCoeff2);
si.optimizeLambda(); si.integrate();

Computes integrals in parallel on GPUs \& CPUs. Dynamically adjusts \# points per sector to reduce amplitude error

Slide:

Approximate top-mass effects at NLO

Tom

Zirke

$$
\begin{aligned}
\sigma^{N L O}(p)= & \left.\int d \phi_{3}\left[\left(d \sigma^{R}(p)\right)_{c=0}-\left(\sum_{\text {dipoles }} d \sigma^{L O}(p) \otimes d V_{\text {dipoole }}\right)\right)_{\epsilon=0}\right] \nabla \\
& \left.\left.+\int d \phi_{2} d \sigma^{\delta}(p)+d \sigma^{L o}(p) \otimes \mathbb{1}\right]_{c-1}\right) \\
& +\int_{0}^{1} d x \int d \phi_{2}\left[d \sigma^{L O}(x p) \otimes(\mathbf{P}+\mathbf{K})(x)\right]_{c=0} \nabla
\end{aligned}
$$

$$
\begin{aligned}
d \sigma^{V}+d \sigma^{L O}(\epsilon) \otimes \mathbf{I} & \approx d \sigma_{\text {exp }, N}^{V} \frac{d \sigma^{L O}(\epsilon)}{d \sigma_{\text {exp }, N}^{L O}(\epsilon)}+d \sigma^{L O}(\epsilon) \otimes \mathbf{I} \\
& =\left(d \sigma_{\text {exp }, N}^{V}+d \sigma_{\text {exp }, N}^{L O}(\epsilon) \otimes \mathbf{I}\right) \frac{d \sigma^{L O}(\epsilon)}{d \sigma_{\text {exp }, N}(\epsilon)} \\
& =\left(d \sigma_{\text {exp }, N}^{V}+d \sigma_{\text {exp }, N}^{L O}(\epsilon) \otimes \mathbf{I}\right) \frac{d \sigma^{L O}(\epsilon=0)}{d \sigma_{\text {exp }, N}^{L O}(\epsilon=0)}+\mathcal{O}(\epsilon)
\end{aligned}
$$

$$
d \sigma_{\text {exp }, N}=\sum_{k=0}^{N} d \sigma^{(k)}\left(\frac{\Lambda}{m_{t}}\right)^{2 k}
$$

$$
\Lambda \in\left\{\sqrt{s}, \sqrt{t}, \sqrt{u}, m_{h}\right\}
$$

- full real-emission matrix elements and dipoles
- virtual corrections as asymptotic expansion in $1 / \mathrm{mt}^{2}$ with qえe/exp [Harlander, Seidensticker, Seidensticker] + Reduze [von Manteuffel, Studerus] + matad [Steinhauser]
- not directly comparable with [Grigo, Hoff, Steinhauser], (real radiation treated differently, expansion parameter $\left(\mathrm{m}_{\mathrm{H}} / \mathrm{m}_{\mathrm{t}}\right)^{2}$)

HEFT NNLO + NNLL

de Florian, Mazzitelli 15

$\mu_{0}=Q$	NNLO (fb)	scale unc. (\%)	NNLL (fb)	scale unc. (\%)	PDF unc. (\%)	PDF $+\alpha_{\mathrm{S}}$ unc. (\%)
8 TeV	9.92	$+9.3-10$	10.8	$+5.4-5.9$	$+5.6-6.0$	$+9.3-9.2$
13 TeV	34.3	$+8.3-8.9$	36.8	$+5.1-6.0$	$+4.0-4.3$	$+7.7-7.5$
14 TeV	40.9	$+8.2-8.8$	43.7	$+5.1-6.0$	$+3.8-4.0$	$+7.5-7.3$
33 TeV	247	$+7.1-7.4$	259	$+5.0-6.1$	$+2.2-2.8$	$+6.1-6.1$
100 TeV	1660	$+6.8-7.1$	1723	$+5.2-6.1$	$+2.1-3.0$	$+5.7-5.8$
$\mu_{0}=Q / 2$	NNLO (fb)	scale unc. (\%)	NNLL (fb)	scale unc. (\%)	PDF unc. (\%)	PDF $+\alpha_{\text {S }}$ unc. (\%)
8 TeV	10.8	$+5.7-8.5$	11.0	$+4.0-5.6$	$+5.8-6.1$	$+9.6-9.3$
13 TeV	37.2	$+5.5-7.6$	37.4	$+4.2-5.8$	$+4.1-4.3$	$+7.8-7.6$
14 TeV	44.2	$+5.5-7.6$	44.5	$+4.2-5.9$	$+3.9-4.1$	$+7.6-7.4$
33 TeV	264	$+5.3-6.6$	265	$+4.6-6.1$	$+2.4-2.7$	$+6.3-6.1$
100 TeV	1760	$+5.3-6.7$	1762	$+4.9-6.4$	$+2.2-3.1$	$+6.2-7.0$

G.H.S Top Mass Expansion

Grigo, Hoff, Steinhauser 15

