## Higgs Boson Pair Production @ NLO in QCD



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

#### Stephen Jones

Borowka, Greiner, Heinrich, Kerner, Schlenk, Schubert, Zirke

JHEP (2016) 107 PRL 117 (2016) 012001, Erratum 079901 PoS LL2016 (2016) 069





## Motivation

Higgs Lagrangian:

$$\mathcal{L} \supset -V(\Phi^{\dagger}\Phi), \quad V(\Phi^{\dagger}\Phi) = -\frac{1}{2}\mu^{2}\Phi^{\dagger}\Phi + \frac{1}{4}\lambda(\Phi^{\dagger}\Phi)^{2}$$
  
EW symmetry breaking  
$$\frac{m_{H}^{2}}{2}H^{2} + \frac{m_{H}^{2}}{2v}H^{3} + \frac{m_{H}^{2}}{8v^{2}}H^{4}$$

Higgs pair production probes triple-Higgs coupling



# **Production Channels**

9 0000

#### **Gluon Fusion**

#### Vector Boson Fusion (VBF)

NLO [1,2] NNLO [3] + non-negligible contribution from  $gg \rightarrow HHjj$  LO [5]

**Top-Quark Associated** NLO [2]

## **Higgs-strahlung** NLO [1,2] NNLO [1,4]





[1] Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12;
[2] Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro 14;
[3] Ling, Zhang, Ma, Guo, Li, Li 14 [4] Li, Wang 16
[5] Dolan, Englert, Greiner, Nordstrom, Spannowsky 15;

 $\sigma(pp \to HH + X) @ 14 \text{ TeV}$ 







# Higgs EFT

H(iggs)EFT:  $m_T \rightarrow \infty$ Effective tree-level couplings between gluons and Higgs Lowers number of loops by 1



Small energy range in which HEFT is technically justified

### Born improved NLO HEFT:

$$d\sigma_{\rm NLO}(m_T) \approx d\bar{\sigma}_{\rm NLO}(m_T) \equiv \frac{d\sigma_{\rm NLO}(m_T \to \infty)}{d\sigma_{\rm LO}(m_T \to \infty)} d\sigma_{\rm LO}(m_T)$$

Spira et al. (HPAIR)

# Gluon Fusion

- LO (1-loop), Dominated by top (bottom <1%) Glover, van der Bij 88
- 2. Born Improved NLO H(iggs)EFT  $m_T \rightarrow \infty$  K $\approx$  2 Dawson, Dittmaier, Spira 98
- A. Including  $m_T$  in Real radiation Maltoni, Vryonidou, Zaro 14
- B. Including  $O(1/m_T^{12})$  terms in Virtual MEs ±10% Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff 14; Grigo, Hoff, Steinhauser 15

Ferrera, Pires 16





-10%



# Gluon Fusion (II)

4. Born Improved NNLO HEFT De Florian, Mazzitelli 13

+20%

Including matching coefficients Grigo, Melnikov, Steinhauser 14

Including terms  $\mathcal{O}(1/m_T^4)$  in Virtual MEs Grigo, Hoff, Steinhauser 15

(Threshold) NNLL + NNLO Matching (SCET) Shao, Li, Li, Wang 13; de Florian, Mazzitelli 15

5. NNLO HEFT (Differential) de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16



# NLO Calculation



#### Many integrals not known analytically, except:

 $H \rightarrow Z\gamma$  Bonciani, Del Duca, Frellesvig et al. 15; Gehrmann, Guns, Kara 15;

## Form Factor Decomposition

Expose tensor structure:  $\mathcal{M} = \epsilon^1_\mu \epsilon^2_\nu \mathcal{M}^{\mu\nu}$ 

Form Factors (Contain integrals)  

$$\mathcal{M}^{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_2^{\mu\nu}$$
(Tensor) Basis, built from external momenta & metric  
Choose:  $\mathcal{M}^{++} = \mathcal{M}^{--} = -F_1$   
 $\mathcal{M}^{+-} = \mathcal{M}^{-+} = -F_2$ 

Glover, van der Bij 88

Construct projectors such that:

$$P_1^{\mu\nu} \mathcal{M}_{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$
$$P_2^{\mu\nu} \mathcal{M}_{\mu\nu} = F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$

# Integral Reduction

Tensor integrals rewritten as inverse propagators



| Integrals    | 1-loop | 2-loop                      |
|--------------|--------|-----------------------------|
| Direct       | 63     | 9865                        |
| + Symmetries | 21     | 1601                        |
| + IBPs       | 8      | ~260-270<br>(currently 327) |

Reduction with REDUZE 2

von Manteuffel, Studerus 12

Up to 4 inverse propagators

Simplification, fix:  $m_T = 173 \text{ GeV}, m_H = 125 \text{ GeV}$ 

(Mostly) Finite Basis Panzer 14; von Manteuffel, Panzer, Schabinger 15

# Non-planar integrals computed mostly without reduction

# Amplitude Evaluation

#### All master integrals processed with SecDec

Borowka, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke

Sector decompose Feynman integrals Hepp 66; Denner, Roth 96; Binoth, Heinrich 00 Contour deformation Soper 00; Binoth, Guillet, Heinrich et al. 05; Nagy, Soper 06; Borowka et al. 12

Use Quasi-Monte-Carlo (QMC) integration  $\mathcal{O}(n^{-1})$  error scaling Review: Dick, Kuo, Sloan 13; Li, Wang, Yan, Zhao 15

#### Implemented in OpenCL, evaluated on GPUs

Entire 2-loop amplitude evaluated with a single code

$$F = \sum_{i} \left( \sum_{j} C_{i,j} \epsilon^{j} \right) \left( \sum_{k} I_{i,k} \epsilon^{k} \right) = \epsilon^{-2} \left[ C_{1,-2}^{(L)} I_{1,0}^{(L)} + \ldots \right]$$
  
coeff. integral 
$$+ \epsilon^{-1} \left[ C_{1,-1}^{(L)} I_{1,0}^{(L)} + \ldots \right] + \ldots$$

Dynamically set target precision for each sector, minimising time:

$$T = \sum_{i} t_{i} + \bar{\lambda} \left( \sigma^{2} - \sum_{i} \sigma_{i}^{2} \right), \quad \sigma_{i} \sim t_{i}^{-e}$$

- $\bar{\lambda}$  Lagrange multiplier
- $\sigma$  precision goal

$$\sigma_i$$
 – error estimate

# Phase-space Sampling

VEGAS algorithm applied to LO calculation; \$\mathcal{O}(100k)\$ events computed
 unweighted LO events using accept/reject method; \$\mathcal{O}(30k)\$ events

remain

3) Randomly select 917+150 events, compute at NLO, exclude 4+1



Phase-Space Point Distribution

Accuracy goal: 3% for  $F_1$ 5-20% for  $F_2$  (depending on  $F_2/F_1$ ) GPU Time/PS point: 80 min - 2 d (=wall-clock limit)

median 2 h

### Additional 1488 events now on disk (not used yet)

## Results: Invariant Mass



# Results: pT either Higgs



**HEFT:** Can poor approx. for larger  $p_{T,h}$ 

**Note:** ambiguous how to rescale HEFT reals by full LO born differentially

**FTapp:** Significantly better but still overestimating

Real radiation plays larger role for large  $p_{T,h}$  (As hoped) Including full reals does improve over HEFT in tails

# Results: 100TeV



Difference between full theory and HEFT more pronounced

## Comparison to Expansion

Can compare just virtual ME to expansion:



Expansion converges on full  $\sqrt{\hat{s}} < 2m_T$ 

Grigo, Hoff, Steinhauser 15

# Triple-Higgs Coupling Sensitivity

Note: Just varying  $\lambda$ : one ``direction'' in EFT parameter space



**SM:** Destructive interference between  $g_{hhh}$  and  $y_T^2$  contrib.

Quadratic dependence on  $\lambda$  (at LO in  $\lambda$ )

**Distributions:** can help to distinguish between  $\lambda$  values that give same total cross-section

# NLO Improved NNLO HEFT



# Conclusion

## **Gluon Fusion**

- Key measurement for probing the self coupling (HL-LHC era)
- NLO deviates from Born Improved HEFT -14% @ 14 TeV, -24% @ 100 TeV
- Distributions altered significantly

## Future

- Fully differential/improved combination with NNLO HEFT
- Grid (faster evaluation of virtuals)
- Parton Shower: POWHEG, MG5\_aMC@NLO, Herwig, Sherpa
- EFT/2HDM analysis (?)
- Apply methods/framework GoSam-2L+SecDec to other processes

## Thank you for listening!

## Backup

# NLO Improved NNLO HEFT (II)





 $y_{hh}$ 

20

# Total Cross Section @ 14 TeV



#### \* re-weighted on total cross-section level

de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; Maltoni, Vryonidou, Zaro 14 (recalculated by us); Borowka, Greiner, Heinrich, Kerner, Schlenk, Schubert, Zirke 16; Dawson, Dittmaier, Spira 98 (recalculated by us); Glover, van der Bij 88 (recalculated by us)

#### **Comparison to Full Theory**

|                       | $\Delta \sigma_{ m LO}^{ m Full}$ | $\Delta \sigma_{ m NLO}^{ m Full}$ |
|-----------------------|-----------------------------------|------------------------------------|
| $\operatorname{HEFT}$ | -14%                              | -3.0%                              |
| B.I. HEFT             | 0%                                | +16%                               |
| FTapprox              | 0%                                | +4.1%                              |

Can do a similar exercise @ 100 TeV, differences typically larger

## YR4 Numbers

YR4 Prescription:

$$\sigma(gg \to hh)_{NLO}^{exact} = \sigma(gg \to hh)_{NLO}^{HEFT} (1 + \delta_t)$$
$$\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \sigma_{NLO}^{HEFT}$$

| $\sqrt{S}$    | $\sigma'_{\rm NNLL}$ (fb) | Scale Unc. $(\%)$ | PDF Unc. $(\%)$ | $\alpha_S$ Unc. (%) |
|---------------|---------------------------|-------------------|-----------------|---------------------|
| $7 { m TeV}$  | 7.078                     | +4.0 - 5.7        | $\pm 3.4$       | $\pm 2.8$           |
| $8 { m TeV}$  | 10.16                     | +4.1 - 5.7        | $\pm 3.1$       | $\pm 2.6$           |
| $13 { m TeV}$ | 33.53                     | +4.3 - 6.0        | $\pm 2.1$       | $\pm 2.3$           |
| $14 { m TeV}$ | 39.64                     | +4.4 - 6.0        | $\pm 2.1$       | $\pm 2.2$           |

# Checks

#### Real Emission & Catani-Seymour Subtraction Terms Catani, Seymour 96

Independence of dipole cut parameter Nagy 03

Real + HEFT agrees with MG5\_AMC@NLO

#### Maltoni, Vryonidou, Zaro 14

#### **Virtual Corrections**

- 2 calculations of unreduced amplitude
- 2 calculations of mass renormalization (CT vs  $\mathrm{d}\mathcal{M}^{\mathrm{LO}}/\mathrm{d}m_T^2$  numerically)
- (Some) integrals cross-checked with VEGAS Lepage 80; Hahn (Cuba)
- Amplitude invariant under crossing
- Numerical pole cancellation (5 digits)
- Single Higgs production part agrees with SusHi Harlander, Liebler, Mantler 13,16;
- $1/m_T$  result converges to full result below top threshold

Grigo, Hoff, Steinhauser 15

# A. FT approx



**Distribution:** Agreement between HEFT approximations in first bin where  $\sqrt{\hat{s}} \approx 2m_H$ , not much hard real emission

**Total:**  $m_T$  in only reals suppresses XS by 11% compared to HEFT

# B. Expansion in Top Quark Mass



(Tom Zirke) Virtuals: asymptotic expansion in  $1/m_T^2$  (q2e/exp+ Reduze + matad) Harlander, Seidensticker, Steinhauser 97,99; von Manteuffel, Studerus 12; Steinhauser 00

## Mass effects give large uncertainty Required NLO calculation with full mass dependence

# LO & Born Improved NLO HEFT



PDF4LHC15\_nlo\_30\_pdfas  $m_H = 125 \text{ GeV}$   $m_T = 173 \text{ GeV}$ Uncertainty:  $\mu_R = \mu_F = \frac{m_{HH}}{2}$  $\mu \in \left[\frac{\mu_0}{2}, 2\mu_0\right]$  (7 - point)

LO: HEFT describes distributions poorly, underestimates XS @ LO by 14%

NLO: HEFT indicates  $K \approx 2$ 

# NLO HEFT



## **Top-quark Width Effects**

Total XS @ LO: reduced by 2% by including top-quark width



Figure 3: Top width effect on the one-loop (Born) matrix element squared for  $gg \to HH$ . The results for  $\Gamma_t = 0$  and 1.5 GeV are shown along with the corresponding ratio.

Maltoni, Vryonidou, Zaro 14

## Lambda Variation



$$\sqrt{s} = 14 \,\mathrm{TeV}$$

## Lambda Variation



## Scaling



## Lambda 0 x SM



## Lambda 2 x SM



## Lambda 5 x SM



# Amplitude Structure

 $\overline{\mathrm{MS}}$  scheme strong coupling a and  $\mathrm{OS}$  top-quark mass:

$$F = aF^{(1)} + a^{2}(\delta Z_{A} + \delta Z_{a})F^{(1)} + a^{2}\delta m_{t}^{2}F^{ct,(1)} + a^{2}F^{(2)} + O(a^{3})$$

$$F^{(1)} = \left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\epsilon} \left[b_{0}^{(1)} + b_{1}^{(1)}\epsilon + b_{2}^{(1)}\epsilon^{2} + O(\epsilon^{3})\right] - 1\text{-loop}$$

$$F^{ct,(1)} = \left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\epsilon} \left[c_{0}^{(1)} + c_{1}^{(1)}\epsilon + O(\epsilon^{2})\right] - Mass \text{ Counter-Terms}$$

$$F^{(2)} = \left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{2\epsilon} \left[\frac{b_{-2}^{(2)}}{\epsilon^{2}} + \frac{b_{-1}^{(2)}}{\epsilon} + b_{0}^{(2)} + O(\epsilon)\right] - 2\text{-loop}$$

**Red** terms contain integrals, computed numerically at each PS point, not re-evaluated for scale variations

# Real Radiation (HH + j...): $gg \rightarrow HH + g$ $g\bar{q} \rightarrow HH + \bar{q}$ $q\bar{q} \rightarrow HH + g$ $gq \rightarrow HH + q$

GoSam for MEs Cullen et al. 14

Catani-Seymour Dipole Subtraction Catani, Seymour 96

## BSM EFT

Parametrise **non-resonant** new physics with EFT (5 parameters):



(B.I. HEFT) Gröber, Mühlleitner, Spira, Streicher 15;

# Amplitude Evaluation (II)

Contributing integrals:

 $\sqrt{s} = 327.25 \,\text{GeV}, \, \sqrt{-t} = 170.05 \,\text{GeV}, \, M^2 = s/4$ 

| integral                                                                                                                                                                                                                                                      |                                   | value               |                                      | error   | time [s]  |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|--------------------------------------|---------|-----------|-----------|
| <br>F1_0111<br>                                                                                                                                                                                                                                               | 11110_ord0                        | (0.484, 4.96e-05)   | (4.40e-05, 4.2                       | 3e-05)  | 11.8459 < |           |
| N3_1111                                                                                                                                                                                                                                                       | 11100_k1p2k2p2_ord0               | (0.0929, -0.224)    | (6.32e-05, 5.9)                      | 3e-05)  | 235.412   |           |
| N3_1111                                                                                                                                                                                                                                                       | 11100_1_ord0                      | (-0.0282, 0.179)    | (8.01e-05, 9.1                       | 8e-05)  | 265.896   |           |
| N3_1111                                                                                                                                                                                                                                                       | 11100 k1p2k1p2_ord0               | (0.0245, 0.0888)    | (5.06e-05, 5.3)                      | 1e-05)  | 282.794   |           |
| N3_1111                                                                                                                                                                                                                                                       | 11100_k1p2_ord0                   | (-0.00692, -0.108)  | (3.05e-05, 3.0)                      | 5e-05)  | 433.342   |           |
| $I(s,t,m_t^2,m_h^2) = -\left(\frac{\mu^2}{M^2}\right)^{2\varepsilon} \Gamma(3+2\epsilon)M^{-4}\left(\frac{A_{-2}}{\epsilon^2} + \frac{A_{-1}}{\epsilon^1} + A_0 + \mathcal{O}(\epsilon)\right) \qquad g \xrightarrow{q} 000000000000000000000000000000000000$ |                                   |                     |                                      |         |           |           |
| sector                                                                                                                                                                                                                                                        | integral value                    | er                  | ror time [s]                         | #pc     | oints     |           |
| 5                                                                                                                                                                                                                                                             | (-1.34e-03, 2.00e-07)             | (2.38e-07, 2.69e-0) | 07) 0.255                            | 131(    | 0420      |           |
| 6                                                                                                                                                                                                                                                             | (-1.58e-03, -9.23e-05)            | (7.44e-07, 5.34e-0) | 0.266                                | 131(    | 0420      |           |
| · · · · /1                                                                                                                                                                                                                                                    | (0.170 - 0.856)                   | (1.100.05 + 1.990)  | (15)  20.484                         | 70054   | 0890      |           |
| 41<br>/19                                                                                                                                                                                                                                                     | (0.173, -0.000)<br>(0.250, 1.208) | (1.100-05, 1.220-0) | 23.404                               | 911/126 | 3020      |           |
| 44                                                                                                                                                                                                                                                            | (0.0752, -1.185)                  | (5.44e-07, 6.76e-0) | 000000000000000000000000000000000000 | 282904  | 4860      | (LL 2016) |

# Rank 1 Shifted Lattices

Generating vector  $\vec{z}$  precomputed for a **fixed** number of lattice points, chosen to minimise worst-case error Nuyens 07

# Rank 1 Shifted Lattices (II)

Unbiased error estimate computed from random shifts:



Typically 10-50 shifts, production run: 20 shifts

# R1SL: Algorithm Performance

**Example:** Rel. Err. of one sector of sector decomposed loop integral



# **R1SL: Implementation Performance**

#### Accuracy limited primarily by number of function evaluations

Implemented in OpenCL 1.1 for CPU & GPU, generate points on GPU/ CPU core, sum blocks of points (reduce memory usage/transfers)



# Current Experimental Limits

| Decay Ch.                                | B.R.   | 95% Excl.                     | Analysis $\left( \left[ fb^{-1} \right], \sqrt{s} \left[ \text{TeV} \right] \right)$ |
|------------------------------------------|--------|-------------------------------|--------------------------------------------------------------------------------------|
| $b\overline{b}b\overline{b}$             | 33%    | $< 29 \cdot \sigma_{\rm SM}$  | ATLAS-CONF-2016-017 (3.2,13)                                                         |
|                                          |        |                               | ATLAS-CONF-2016-049 (13.3,13)                                                        |
| $b\overline{b}WW$                        | 25%    |                               |                                                                                      |
| $b\overline{b}	au	au$                    | 7.3%   | $< 200 \cdot \sigma_{\rm SM}$ | CMS PAS HIG-16-012 $(2.7,13)$                                                        |
|                                          |        |                               | CMS PAS HIG-16-028 (12.9,13)                                                         |
|                                          |        |                               | CMS PAS HIG-15-013 (18.3,8)                                                          |
| $b\overline{b}ZZ$                        | 3.0%   | _                             |                                                                                      |
| WW	au	au                                 | 2.71%  |                               |                                                                                      |
| WWZZ                                     | 1.13%  | _                             |                                                                                      |
| $b\overline{b}\gamma\gamma$              | 0.26%  | < 3.9 pb                      | ATLAS-CONF-2016-004 (3.2,13)                                                         |
|                                          |        | $< 74 \cdot \sigma_{\rm SM}$  | CMS-HIG-13-032 (19.7,8)                                                              |
| $\gamma\gamma\gamma\gamma\gamma$         | 0.001% | —                             | _                                                                                    |
| $\overline{bb}VV(\rightarrow l\nu l\nu)$ | 1.23%  | $400 \cdot \sigma_{\rm SM}$   | CMS PAS HIG-16-024 (2.3,13)                                                          |
| $\gamma\gamma WW^*(\rightarrow l\nu jj)$ | —      | < 25 pb                       | ATLAS-CONF-2016-071 $(13.3, 13)$                                                     |
| Comb Ch.                                 | _      | $< 70 \cdot \sigma_{\rm SM}$  | ATLAS arXiv:1509.04670v2 (20.3,8)                                                    |

# Future Experimental Prospects

HL-LHC (14 TeV) ATLAS+CMS bbγγ + bbττ: Expected significance 1.9 sigma CERN-LHCC-2015-10

ATLAS bbγγ: Signal significance 1.3 sigma ATL-PHYS-PUB-2014-019

ATLAS bbtt: Signal significance 0.6 sigma ATL-PHYS-PUB-2015-046

#### FCC (100 TeV)

This rate is expected to provide a clear signal in the  $HH \rightarrow (b\bar{b})(\gamma\gamma)$  channel and to allow determination of  $\lambda_{3H}$  with an accuracy of 30-40% with a luminosity of 3 ab<sup>-1</sup>, and of 5-10% with a luminosity of 30 ab<sup>-1</sup> [497–499]. A rare decay channel which is potentially interesting is  $HH \rightarrow (b\bar{b})(ZZ) \rightarrow (b\bar{b})(4l)$ , with a few expected signal events against  $\mathcal{O}(10)$  background events at 3 ab<sup>-1</sup> [500].

arXiv:1607.01831

## Production Channels (II)



Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12

# **Resonant Production**

 $\Phi^{T} = (\phi^{+}, \tilde{\phi}_{0} = \frac{\phi_{0} + v}{\sqrt{s}})$  $S = \frac{s + \langle S \rangle}{\sqrt{2}}$ 

YR4 details two benchmark scenarios for initial study

#### **Higgs Singlet Model**

$$V = -m^2 \Phi^{\dagger} \Phi - \mu^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2$$

Large 
$$\mathcal{O}(20 - 30\%)$$
  $H \rightarrow hh$   
Cross-section can be enhanced by up to 10-20x

#### 2 Higgs Doublet Model (2HDM)

2 neutral scalars 
$$\rightarrow h^0, H^0, A, H^+, H^- \leftarrow 2$$
 charged Higgs  
Pseudoscalar

Behaviour strongly depends on the scenario

Hespel, López-Val, Vryonidou 14

## **Integral Families**

tensor integrals: scalar products  $\rightarrow$  inverse propagators

# I.i. scalar products:  

$$S = \frac{l(l+1)}{2} + lm$$
  
 $S = \frac{l(l+1)}{2} + lm$   
 $S = \frac{l(l+1)}{2} +$ 

 $\rightarrow$  integral families with 9 propagators

 $\rightarrow$  general loop integral:

$$I_{\nu_1,...,\nu_9}^{\text{fam}_j} = \int d^d p_1 \int d^d p_2 \frac{1}{D_1^{\nu_1} D_2^{\nu_2} \cdots D_9^{\nu_9}} \qquad \nu_i \in \mathbb{Z}$$



## **Integral Families**

tensor integrals: scalar products  $\rightarrow$  inverse propagators

# I.i. scalar products:Slide: Matthias Kerner
$$S = \frac{l(l+1)}{2} + lm$$
 $l = 2:$ # loops $m = 3:$ # l.i. external momenta $\Rightarrow$  $S = 9$ 

 $\rightarrow$  integral families with 9 propagators



## Form Factor Decomposition (II)

$$T_1^{\mu\nu} = g^{\mu\nu} - \frac{p_2^{\mu} p_1^{\nu}}{p_1 \cdot p_2} \qquad \qquad p_T^2 = \frac{ut - m_H^4}{s}$$

$$T_2^{\mu\nu} = g^{\mu\nu} + \frac{m_H^2 p_2^{\mu} p_1^{\nu}}{p_T^2 p_1 \cdot p_2} - \frac{2p_1 \cdot p_3 p_2^{\mu} p_3^{\nu}}{p_T^2 p_1 \cdot p_2} - \frac{2p_2 \cdot p_3 p_3^{\mu} p_1^{\nu}}{p_T^2 p_1 \cdot p_2} + \frac{2p_3^{\mu} p_3^{\nu}}{p_T^2}$$

Glover, van der Bij 88

Projectors (CDR  $D = 4 - 2\epsilon$ ):

$$\begin{split} P_1^{\mu\nu} &= \quad \frac{1}{4} \frac{D-2}{D-3} T_1^{\mu\nu} - \frac{1}{4} \frac{D-4}{D-3} T_2^{\mu\nu} \\ P_2^{\mu\nu} &= -\frac{1}{4} \frac{D-4}{D-3} T_1^{\mu\nu} + \frac{1}{4} \frac{D-2}{D-3} T_2^{\mu\nu} \end{split} \begin{array}{l} \text{Same Basis as} \\ \text{amplitude} \end{array} \end{split}$$

Compute:

$$P_1^{\mu\nu} \mathcal{M}_{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$
$$P_2^{\mu\nu} \mathcal{M}_{\mu\nu} = F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$

# Virtual MEs: Tool Chain

#### Partial cross-check: 2 Implementations



# Master Integrals

#### Known Analytically:



Numeric Evaluation:



Up to 4-point, 4 scales  $s, t, m_T^2, m_H^2$ SecDec

Slide: Matthias Kerner

# Numerical Master Integrals

To evaluate Master Integrals we use SecDec which implements Sector Decomposition <sup>Collaboration: Borowka</sup>, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke

**Completely automated procedure** 

#### **Sector Decomposition**

1) Feynman Parametrise integral and compute momentum integrals

$$G = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_0^\infty \prod_{j=1}^{N} \mathrm{d}x_j \ x_j^{\nu_j - 1} \delta(1 - \sum_{i=1}^{N} x_i) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}(\vec{x})}{\mathcal{F}^{N_{\nu} - LD/2}(\vec{x}, s_{ij})}$$

Here  $\mathcal{U}, \mathcal{F}$  are 1st, 2nd Symanzik Polynomials

We have exchanged L momentum integrals for N parameter integrals

## Sector Decomposition

2) After integrating out  $\delta$  we are faced with integrals of the form:

$$G_{i} = \int_{0}^{1} \left( \prod_{j=1}^{N-1} dx_{j} x_{j}^{\nu_{j}-1} \right) \frac{\mathcal{U}_{i}(\vec{x})^{\exp \mathcal{U}(\epsilon)}}{\mathcal{F}_{i}(\vec{x}, s_{ij})^{\exp \mathcal{F}(\epsilon)}} \quad \text{Powers depending on } \epsilon$$

$$F_{i}(\vec{x}, s_{ij})^{\exp \mathcal{F}(\epsilon)}$$

$$F_{i}(\vec{x}, s_{ij})^{\exp \mathcal{F}(\epsilon)}$$

Which may contain overlapping singularities which appear when several  $x_j \rightarrow 0$  simultaneously (corresponding to UV/IR singularities) Sector decomposition maps each integral into integrals of the form:

$$G_{ik} = \int_0^1 \left( \prod_{j=1}^{N-1} \mathrm{d}x_j x_j^{a_j - b_j \epsilon} \right) \frac{\mathcal{U}_{ik}(\vec{x})^{\exp \mathcal{U}(\epsilon)}}{\mathcal{F}_{ik}(\vec{x}, s_{ij})^{\exp \mathcal{F}(\epsilon)}}$$

 $\mathcal{U}_{ik}(\vec{x}) = 1 + u(\vec{x})$ Singularity structure can be read off  $\mathcal{F}_{ik}(\vec{x}) = -s_0 + f(\vec{x})$   $u(\vec{x}), f(\vec{x})$ have no constant term
Hepp 66; Denner, Roth 96; Binoth, Heinrich 00

# Sector Decomposition (II)

#### One technique **Iterated Sector Decomposition** repeat:

 $\begin{aligned} &\int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \frac{1}{(x_{1}+x_{2})^{2+\epsilon}} & \longleftarrow \text{Overlapping singularity for } x_{1}, x_{2} \to 0 \\ &= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \frac{1}{(x_{1}+x_{2})^{2+\epsilon}} (\theta(x_{1}-x_{2})+\theta(x_{2}-x_{1})) \\ &= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{x_{1}} \mathrm{d}x_{2} \frac{1}{(x_{1}+x_{2})^{2+\epsilon}} + \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{x_{2}} \mathrm{d}x_{1} \frac{1}{(x_{1}+x_{2})^{2+\epsilon}} \\ &= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}t_{2} \frac{x_{1}}{(x_{1}+x_{1}t_{2})^{2+\epsilon}} + \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{1} \mathrm{d}t_{1} \frac{x_{2}}{(x_{2}t_{1}+x_{2})^{2+\epsilon}} \\ &= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}t_{2} \frac{x_{1}^{-1-\epsilon}}{(1+t_{2})^{2+\epsilon}} + \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{1} \mathrm{d}t_{1} \frac{x_{2}^{-1-\epsilon}}{(t_{1}+1)^{2+\epsilon}} & \longrightarrow \text{Singularities factorised} \end{aligned}$ 

If this procedure terminates depends on order of decomposition steps An alternative strategy **Geometric Sector Decomposition** always terminates; both strategies are implemented in **SecDec**. Kaneko, Ueda 10; See also: Bogner, Weinzierl 08; Smirnov, Tentyukov 09

# Sector Decomposition (III)

3) Expand in  $\epsilon$  (simple case a = -1):

$$\int_{0}^{1} dx^{-1-b\epsilon} g(x) = \frac{g(0)}{-b\epsilon} + \int_{0}^{1} dx x^{-b\epsilon} \left[ \frac{g(x) - g(0)}{x} \right] \leftarrow \text{Finite}$$
Poles
Note: `subtraction' of  $g(0)$ 

By Definition:  $g(0) \neq 0, g(0)$  finite

4) Numerically integrate

SecDec supports: numerators, inverse propagators, ``dots", physical kinematics, arbitrary loops & legs (within reason) Soper 00; Nagy, Soper 06; Borowka 14

Key Point: Sector Decomposed integrals can be expanded in  $\epsilon$  and numerically integrated

## SecDec as a Library

**Single** program to compute **all** coefficients & integrals to obtain **amplitude** to given accuracy



## Slide: Approximate top-mass effects at NLO Tom $\sigma^{NLO}(p) = \int d\phi_3 \left[ \left( d\sigma^R(p) \right)_{\epsilon=0} - \left( \sum_{\text{dipoles}} d\sigma^{LO}(p) \otimes dV_{\text{dipole}} \right)_{\epsilon=0} \right] \bigvee$ Zirke $+ \int d\phi_2 \left[ d\sigma^V(p) + d\sigma^{LO}(p) \otimes \mathbf{I} \right]_{\epsilon=0}$ + $\int_0^1 dx \int d\phi_2 \left[ d\sigma^{LO}(xp) \otimes (\mathbf{P} + \mathbf{K})(x) \right]_{\epsilon=0} \mathbf{\nabla}$ $d\sigma_{\exp,N} = \sum_{k=0}^{N} d\sigma^{(k)} \left(\frac{\Lambda}{m_{t}}\right)^{2k}$ $d\sigma^{V} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I} \approx d\sigma^{V}_{\exp,N} \frac{d\sigma^{LO}(\epsilon)}{d\sigma^{LO}_{\exp,N}(\epsilon)} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I}$ $= \left( d\sigma_{\exp,N}^{V} + d\sigma_{\exp,N}^{LO}(\epsilon) \otimes \mathbf{I} \right) \frac{d\sigma^{LO}(\epsilon)}{d\sigma_{\exp,N}^{LO}(\epsilon)}$ $\Lambda \in \left\{\sqrt{s}, \sqrt{t}, \sqrt{u}, m_h\right\}$ $= \left( d\sigma_{\exp,N}^{V} + d\sigma_{\exp,N}^{LO}(\epsilon) \otimes \mathbf{I} \right) \frac{d\sigma^{LO}(\epsilon=0)}{d\sigma^{LO}(\epsilon=0)} + \mathcal{O}\left(\epsilon\right)$

- full real-emission matrix elements and dipoles
- virtual corrections as asymptotic expansion in 1/mt<sup>2</sup> with q2e/exp [Harlander, Seidensticker, Seidensticker] + Reduze [von Manteuffel, Studerus] + matad [Steinhauser]
- not directly comparable with [Grigo, Hoff, Steinhauser], (real radiation treated differently, expansion parameter (m<sub>H</sub>/m<sub>t</sub>)<sup>2</sup>)

# HEFT NNLO + NNLL



# G.H.S Top Mass Expansion



Grigo, Hoff, Steinhauser 15