Search for beyond the Standard Model Higgs boson decaying to a pair of new light bosons in boosted dimuon final states

Sven Dildick Texas A&M University

on behalf of the CMS Collaboration

Higgs Couplings 2016 9-12 November 2016, SLAC

Overview

- Physics motivation
- Benchmark models
- The CMS detector at the LHC
- Datasets
- Event selection
- Standard model backgrounds
- Model independent results
 - Interpretation in benchmark scenarios: dark SUSY & NMSSM
- Conclusions & outlook

Physics motivation

- Search for non-SM Higgs boson which decays to new light bosons
 - h → 2a + X → 4 μ + X

- Analysis is designed to be model independent
 - Can be used for a wide range of beyond the standard model scenarios for new light bosons, with boosted dimuons in event topology
- We consider two BSM scenarios:
 - SUSY + dark sector (dark SUSY)
 - Next-to-minimal supersymmetric standard model (NMSSM)

Benchmark models

- Dark SUSY: Model a simplified dark sector $U(1)_D$ in SUSY
 - 125 GeV Higgs decays to lightest SUSY particle n₁ (neutralino)
 - _ n₁ decays to dark photon γ_D and a light dark

neutralino nD

- Kinetic mixing between γ and γ_{D}
 - Y^D can decay to pair of muons (dimuon)
 - If γ_D is long-lived: displaced muons w.r.t IP
- $m(\gamma_D)$ between 0.25 and 8.5 GeV
- m(n₁) = 10 GeV, m(n_D) = 1 GeV
- NMSSM: we consider the model
 - CP-even Higgs h_{1,2} with masses between 90 and 150 GeV
 - 125 GeV $h_{1,2}$ is the SM Higgs boson
 - CP-odd Higgs a1 which decays to 2 muons
 - Masses between 0.25 and 3.55 GeV

The CMS detector at the LHC

- Multi-purpose detector at LHC
- Excellent muon detection and reconstruction abilities
- This analysis uses information from tracker + muon system

Datasets

- 2010: 35 pb⁻¹ @ 7TeV <u>10.1007/JHEP07(2011)098</u>
- 2011: 5.3 fb⁻¹ @ 7TeV <u>10.1016/j.physletb.2013.09.009</u>
- 2012: 20.7 fb⁻¹ @ 8TeV <u>10.1016/j.physletb.2015.10.067</u>
- 2015: 2.8 fb⁻¹ @ 13TeV (2015): recently completed This talk
- 2016: analysis on 13TeV (2016) has started

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

Event selection

- New in this analysis! Online selection is done with a non-isolated triple-muon trigger
 - Requires at least 3μ , 1 with $p_T > 15$ GeV and 2 with $p_T > 5$ GeV
- Offline selection: 4 μ with 8 GeV in $|\eta|$ < 2.4, 1 μ with 17 GeV in $|\eta|$ < 0.9
- Nearby muons are clustered into dimuons if $m(\mu\mu) < 9$ GeV and they satisfy either
 - Dimuon vertex from Kalman filter has vertex probability $P_{vertex}(\mu\mu) > 1\%$
 - ΔR(μμ)<0.01
- Require events with exactly 2 dimuons
 - No limit on number of unpaired muons
- Distance between extrapolated dimuon production vertices < 0.1 cm
 Dimuon

Dimuon mass constraint

 Dimuons are produced in decay of same type of new light bosons

- Dimuon masses must be compatible
 - Diagonal mass corridor
 - $|m_{\mu\mu1} m_{\mu\mu2}| < 5 x$ mass resolution
 - Use light SM resonances (ρ , ω , ϕ , J/ ψ) to study mass resolution

Dimuon isolation

- Require low activity around dimuons
 - Select tracks with $p_T > 0.5$ GeV within $\Delta R < 0.4$ and Δz (track- $\mu\mu$) < 0.1 cm
 - Tracks forming the dimuon are excluded
 - Require the total isolation < 2 GeV

$$Iso_{\mu\mu} = \sum_{tracks} p_T(track) < 2 \, GeV$$

Fiducial search region

- Performance of online and offline muon reconstruction algorithms degrades with displacement due to
 - Fewer hits in tracker
 - Vertex that does not point back to IP
- These inefficiencies can introduce a model dependency in the analysis
- To mitigate this, we construct a fiducial region around the IP
 - Distance along z-axis between
 IP and dimuon vertex: L_z <
 46.5 cm (second pixel endcap)
 - Radial distance between IP and dimuon vertex: L_{xy} < 9.8 cm (third pixel barrel)
- Plot shows m(γ_D) = 0.25 GeV (including all lifetimes)

Non-SM Higgs searches with muon-jets

Efficiency over acceptance

- Even with L_{xy} < 9.8 cm, we are sensitive to various dark SUSY models
- The important quantity is ε/α:

 → Ratio of the number of events with 2 reconstructed dimuons (after full selection over the number of events with 2 generated light bosons (within fiducial volume)
- Flat ε/α: 0.68 ± 0.08
 - Allows easy reinterpretation of the results in context of other models

Background: QCD $pp \rightarrow b\overline{b} \rightarrow 4\mu$

- Both b quarks decay into a pair of muons, via semi-leptonic decay of b-quark and daughter c-quark, or via resonances (ρ, ω, φ, J/ψ)
- Determine from data
- Control sample: select events with exactly 1 dimuon and exactly 1 orphan muon (3µ)
 - Same trigger and similar offline selections
- Construct a 2 1D templates
 - The distributions are fit with sum of analytic functions:
 - Bulk shape is Bernstein polynomial
 - ρ, ω and φ resonances are modeled by Gaussian
 - J/ ψ is modeled with Crystal ball function
- 2D template from cartesian product
- Scale the template; expected contribution in signal region: 0.68 +0.54-0.32 events

12

Background: QCD $pp \rightarrow prompt \ 2J/\psi \rightarrow 4\mu$

- Two sources of prompt J/ψ
 - Single Parton Scattering (SPS)
 - Double Parton Scattering (DPS)
- Method:
 - Select sample subset: 2.8 GeV $\leq m(\mu\mu) \leq 3.3$ GeV
 - Separate the prompt from non-prompt contribution with the ABCD method
 - Fit SPS/DPS MC templates to prompt sample
 - Apply signal selection criteria to prompt sample
- Expected contribution in signal region:
 - SPS + DPS : 0.064 ± 0.020 events

Background: EWK $pp \rightarrow 4\mu$

- Model the electroweak contribution to $pp \rightarrow 4\mu$ in MC simulation
 - Include the processes $qq \rightarrow ZZ \rightarrow 4\mu$ (left) and $qq \rightarrow Z \rightarrow 2\mu$, with 2nd Z radiation (right)
 - Other processes are considered negligible
 - 0.036 ± 0.008 events over entire 2D mass plane
 - Expected contribution in signal region is negligible

Results

- After full event selection only one event survives in 2015 dataset
- Compatible with SM expectation: 0.74 ± 0.34 (stat.) ± 0.15 (syst.)
- Model independent limit on $\sigma(pp \rightarrow 2a + X) \times B^2(a \rightarrow 2\mu) \times \alpha_{GEN}$

Benchmark scenario: dark SUSY

- Translate model independents limits into limits vs ct (displacement)
 - Left: limits are compared to the predicted rate (dashed lines) obtained using a simplified scenario with $\sigma(pp \rightarrow 2\gamma_D) = 0.1 \ x \ \sigma_{SM}$ (125 GeV) and $B(\gamma_D \rightarrow 2\mu)$ for 0.25 and 2 GeV mass points
 - Right: Comparison with 8 TeV results shows an improvement at intermediate/high ct due to the enlarged fiducial region

16

Benchmark scenario: dark SUSY

- 95% CL upper limits (black solid curves) on $\sigma(pp \rightarrow h \rightarrow 2\gamma_D + X) x$ B²(h $\rightarrow 2 \gamma_D + X$) in plane of dark photon mass (m(γ_D)) and kinetic mixing parameter (ϵ)
- Exclusion limits from other experiments shown as well
- Colored contours represent different values of B(h → 2 γ_D + X) in the range 0.1% to 40%

Benchmark scenario: NMSSM

- 95% CL upper limits as function of m_h on $\sigma(pp \rightarrow h_{1,2} \rightarrow 2a_1) \ge B^2(a_1 \rightarrow 2\mu)$
- Assume one of the two CP-even Higgs is LHC Higgs boson, then the other one is lighter or heavier
 - tanβ = 20
- Invisible BSM fraction (3%) was tuned such that model cross section intersects with blue line at 125 GeV
 - Much less than most recent CMS +ATLAS 95% CL upper limit (34%) JHEP 08 (2016) 045
- $B(a_1 \rightarrow 2\mu) = 7.7\%$ from theory
- Limit at each mass point is calculated as if only source of signal events is CPeven Higgs boson with corresponding mass

Benchmark scenario: NMSSM

- 95% CL upper limits as function of m(a₁) on σ (pp \rightarrow h_{1,2} \rightarrow 2a₁) x B²(a₁ \rightarrow 2µ)
- Experimental limits (dashed curves) are compared to simple reference model (solid curve) on previous slide

Conclusions & outlook

- A search for new light bosons decaying to prompt or displaced dimuons was presented
- 1 event observed in 2.8 fb⁻¹ of 13 TeV Run-2 data consistent with SM expectation
 - 95% C.L. model independent limit is set
- Results can be used to set limits on a various models with same signature
- Interpreted in the context of 2 benchmark scenarios:
 - dark SUSY and NMSSM
- Analysis is being continued on 2016 Run-2 dataset

Backup slides

Kinetic mixing parameter

• Ctau is related to kinetic mixing parameter in following way:

$$c\tau_{\gamma_D}(\epsilon, m_{\gamma_D})[mm] = \frac{1.97 \cdot 10^{-13} [GeV \cdot mm]}{\epsilon^2} \times f(m_{\gamma_D}) [GeV^{-1}],$$

Event display

15

Event display

Systematic uncertainties

Table 9: Summary of the magnitude of systematic uncertainties.

Source of uncertainties	Error, %
Integrated luminosity	2.7%
Muon HLT	3%
Muon ID	$4 \times 1\%$
Muon tracking	$4 \times 0.2\%$
Di-muon isolation	2 × 1%
Overlapping in Tracker	2 × 1.2%
Overlapping in Muon System	2 × 1.3%
Pile-up	1.6%
Dimuons mass consistency	1.5%
NNLO Higgs p_T re-weighting	2.0%
$PDF+\alpha_s$	3.0%
Total	11.1%

CMS in Run-2

Non-SM Higgs searches with muon-jets