Radiative Higgs Decay to a fermion pair

Xing Wang University of Pittsburgh

Higgs Couplings 2016 SLAC, Nov 9-12,2016

Introduction

- Many decay channels have been established and measured so far.
- * Bosonic decay: $h \rightarrow \gamma \gamma$, ZZ^* , WW^*
- * Fermionic decay: $h \to b\bar{b}, \tau^+\tau^-$

Rare decays:

$$h \to Z\gamma, \ \mu\mu, \ ee,$$

The higgs decay to a fermion pair is a very interesting channel. *

It varies from $O(10^{-5})$ keV to O(1) MeV, depending on the mass.

f

- How about its radiative corrections (QED)? *
- Real emissio *

h

Virtual corrections: *

$$\Gamma_{h\to f\bar{f}}^{\rm V} = \Gamma^0 \times \frac{\alpha}{2\pi} Q_f^2 \left(\frac{4\pi\mu^2}{m_h^2}\right)^{\epsilon} \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} \left(-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 2 + \dots\right)$$

Inclusive: **

$$\Gamma_{\rm tot} = \Gamma^0 \left[1 + \frac{17\alpha}{4\pi} Q_f^2 + \mathcal{O}(\alpha^2) \right]$$

That's it? *

h

Dalitz Decays

- * $\mathcal{O}(y_t \alpha^3, \alpha^4)$ corrections may also be important.
- * Not suppressed by the Yukawa y_f .

(d)

(e)

- They have difference chirality configurations. (c)
- * The interference between there $\sim m_f^2 \to 0$
- * To observe, it requires a hard isolated photon.

Decay Widths

				1000 100 100 100 100 100 100 100 100 10	
	$\Gamma(f\bar{f})$	$\mathcal{O}(y_f^2 \alpha)$	$\left \begin{array}{c} \mathcal{O}(y_t^2 \alpha^3, \alpha^4) \end{array} \right $	$\Gamma(f\bar{f}\gamma)$	${ m Br}(far{f}\gamma)$
	[keV]	[keV]	[keV]	[keV]	$[10^{-4}]$
b	1896	2.20	0.95	8.82	21.0
С	94.05	0.437	0.88	2.53	6.01
τ	261	2.72	0.30	10.3	24.5
μ	0.923	9.65×10^{-3}	0.40	0.43	1.02
e	2.16×10^{-5}	5×10^{-5} 2.25 × 10 ⁻⁷ 0.58		0.58	1.38
	1	1	t	1	1
/ "direct" + "indire					
	f	M ^f	with a h	ard isolated	
h $$ h					vith
	Ī	Ţ	"Indirect"		$\gamma > 5 \text{ GeV}$

 $\Delta R_{f\gamma} > 0.4$

 $M_{f\bar{f}}$ Distribution

120

10⁻⁴

ď

$M_{f\bar{f}}$ Distribution

E_{γ} Distribution

Probe the charm-Yukawa at LHC

Yukawa Couplings

- * The Yukawa couplings to the 3rd generation has been measured through $t\bar{t}h$ (4.4 σ) $h \rightarrow bb$ (2.6 σ) $h \rightarrow \tau\tau$ (> 5 σ)
- * Di-muon channel $h \rightarrow \mu \mu < 3.5 \times SM$
- * Charm (or other light quarks)— many methods proposed.

$h \to b\overline{b}, \ c\overline{c}$	\Rightarrow Stamou's talk	Higgs kinematics	$s \Rightarrow$ Soreq's talk
$h \to J/\psi \gamma$	\Rightarrow Alte's talk	$W^{\pm}h$ asymmetry	$y \Rightarrow$ Yu's talk
Global fit	Perez, et. al. arXiv: 1503.	00290	etc.

* Di-electron channel $h \rightarrow ee < 4 \times 10^5 \times SM$

Charm-Yukawa via Radiative Decay

- * Bound state to open-flavor.
- * Larger branch ratio.

* Require charm-tagging.

Charm Tagging

- * Currently NO c-tagging.
- Difficult. c-jets sit between bjets and light-jets.
- Trade off between b- and lightjets rejection.
- ATLAS proposed an algorithm — JetFitterCharm.

ATL-PHYS-PUB-2015-001

Selection Cuts

- * Higgs production via ggF at LO multiplied by K=2.7
- * Background $pp \rightarrow c\bar{c}\gamma$ at LO by Madgraph

$$p_{Tc} > 40(20) \text{ GeV}$$

 $p_{T\gamma} > 20 \text{ GeV}$
 $|\eta_{\gamma}| < 2.5$
 $\Delta R > 0.4$
 $100 < m_{cc\gamma} < 150 \text{ GeV}$

Charm-Yukawa

If NP only modifies the charm-Yukawa, the statistical significance is

- * In the SM, $h \to \ell^+ \ell^- \gamma$ is not suppressed by their small Yukawa couplings.
- * $pp \to \gamma^* \gamma \to \ell^+ \ell^- \gamma$ and $pp \to Z\gamma \to \ell^+ \ell^- \gamma$ are well separated in $m_{\ell\ell}$, and thus are essentially different observables.
- * Different triggers and selection cuts.

$pp \to Z\gamma \to \ell\ell\gamma$
$m_{\ell\ell} > 50 { m ~GeV}$
$p_{T\ell} > 20(10) \text{ GeV}$
$ \eta_{\mu,e} < 2.5, 2.4$
$\Delta R_{\ell\gamma} > 0.4$
$p_{T\gamma} > 15 \text{ GeV}$
$ \eta_{\gamma} < 2.5$ exclude (1.44, 1.57)
$120 < m_{\ell\ell\gamma} < 130$
$p_{T\gamma} > 15/110 * m_{\ell\ell\gamma}$
$m_{\ell\ell\gamma} + m_{\ell\ell} > 185 \text{ GeV}$

$$pp \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$$

$$m_{\mu\mu} < 20 \text{ GeV}$$

$$p_{T\mu} > 23(4) \text{ GeV}$$

$$|\eta_{\mu}| < 2.4$$

$$\Delta R_{\mu\gamma} > 1$$

$$p_{T\gamma} > 0.3m_{\mu\mu\gamma}$$

$$|\eta_{\gamma}| < 1.44$$

$$120 < m_{\mu\mu\gamma} < 130 \text{ GeV}$$

$$pp \rightarrow \gamma^* \gamma \rightarrow ee\gamma$$

$$m_{ee} < 1.5 \text{ GeV}$$

$$|p_{Te^+}| + |p_{Te^-}| > 44 \text{ GeV}$$

$$|\eta_e| < 1.44$$

$$\Delta R_{e\gamma} > 1$$

$$p_{T\gamma} > 0.3m_{ee\gamma}$$

$$|\eta_{\gamma}| < 1.44$$

$$120 < m_{ee\gamma} < 130 \text{ GeV}$$

Channel	Signal	Background	Statistical Significance	
	[fb]	[fb]	with 0.3 (3) ab^{-1} luminosity	
$pp \to Z\gamma \to \mu^+\mu^-\gamma$	1.40	214	1.66 (5.24)	
$pp \to \gamma^* \gamma \to \mu^+ \mu^- \gamma$	0.69	23.5	2.47 (7.79)	
$pp \rightarrow Z\gamma \rightarrow e^+e^-\gamma$	1.38	224	1.60(5.05)	
$pp \to \gamma^* \gamma \to e^+ e^- \gamma$	1.06	27.0	3.53(11.2)	
	1	~		
	/			
LO ggF × K-factor LO × K-factor for $pp \to Z(\gamma)$				

Channel	Signal	Background	Statistical Significance	
	[fb]	[fb]	with 0.3 (3) ab^{-1} luminosity	
$pp \to Z\gamma \to \mu^+\mu^-\gamma$	1.40	214	1.66 (5.24)	
$pp \to \gamma^* \gamma \to \mu^+ \mu^- \gamma$	0.69	23.5	2.47 (7.79)	
$pp \to Z\gamma \to e^+e^-\gamma$	1.38	224	1.60 (5.05)	
$pp \to \gamma^* \gamma \to e^+ e^- \gamma$	1.06	27.0	$3.53(11.2)$ \checkmark	
	1	~	•	
	/			
LO ggF \times	K-fact	or	\times K-factor for $nn \rightarrow Z(\alpha^*)$	*),

Conclusion

- Higgs radiative decay to a fermion pair is not necessarily suppressed by the yukawa coupling.
- * Interesting channel to observe at LHC.
- With charm-tagging, it can be used to constrain the charm-yukawa.
- * Observability at LHC for leptons.

