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Figure 7: Best fit values of �i · B f for each specific channel i ! H ! f , as obtained from the generic paramet-
erisation with 23 parameters for the combination of the ATLAS and CMS measurements. The error bars indicate
the 1� intervals. The fit results are normalised to the SM predictions for the various parameters and the shaded
bands indicate the theoretical uncertainties in these predictions. Only 20 parameters are shown because some are
either not measured with a meaningful precision, in the case of the H ! ZZ decay channel for the WH, ZH, and
ttH production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the
case of the H ! bb decay mode for the ggF and VBF production processes.
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❖ Many decay channels have been established 
and measured so far.!

❖ Bosonic decay: !

❖ Fermionic decay:!

!

❖ Rare decays: 

h ! bb̄, ⌧+⌧�

h ! ��, ZZ⇤, WW ⇤

h ! Z�, µµ, ee, cc̄



                     Beyond                                              
❖ The higgs decay to a fermion pair is a very interesting channel.!

        It varies from                         to                    , depending on the mass.!

❖ How about its radiative corrections (QED)?!

❖ Real emissions:!

!

❖ Virtual corrections:!

!

❖ Inclusive:!

!

❖ That’s it?

O(10�5) keV O(1) MeV

h

f

f̄

(a)

h

f

f̄

(b)

h

f

f̄

(c)

h

f

γ

f̄

(d)

Figure 1: Representative feynman diagrams of h → ff̄ and its radiative corrections, up

to O(y2fα).

Using dimensional regularization, one can compute the diagram in Fig. 1d and perform

3-body phase-space integration in d = 4−2ϵ dimension to get the real emission part shown

below,

ΓR
h→ff̄γ = Γ0 × α

2π
Q2

f

(
4πµ2

m2
h

)ϵ
Γ(1− ϵ)

Γ(1− 2ϵ)

(
2

ϵ2
+

3

ϵ
+

21

2
− 2π2

3

)
(2.1)

where Qf is the electric charge of the fermion and Γ0 is the decay with of h → ff̄ at tree

level.

To compute the virtual correction, the renormalization of the Yukawa coupling is

needed, unlike the electroweak coupling case where UV divergence is cancelled by a Ward

identity. We adpot MS scheme for renormalization and use MS coupling and mass to

correctly account for the running. In MS scheme, the counterterm of the Yukawa coupling

is given by
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The virtual corrections come from the inteference between one-loop diagrams in Fig. 1b

and 1c and the tree-level diagram in Fig. 1a. The result is,
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Setting the renormalization scale at µ = mh, the inclusive decay width up to O(y2fα)

is

Γtot = Γ0

[
1 +

17α

4π
Q2

f +O(α2)

]
. (2.5)

2.2 EW-loop decay

Besides the diagrams that is suppressed by the yukawa coupling, the decay of a Higgs to

a fermion pair and a photon can also be induced by electroweak loops. Fig. 2 shows some

representative 1-loop diagrams, which can be cast into 4 classes:

I. H → γZ∗ → ff̄γ;
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Dalitz Decays

❖                 corrections may also be important.!

❖ Not suppressed by the Yukawa      . !

!

❖ They have difference chirality configurations.!

❖ The interference between them                    .!

!

❖ To observe, it requires a hard isolated photon.

h

f

f̄

(a)

h

f

f̄

(b)

h

f

f̄

(c)

h

f

γ

f̄

(d)

Figure 1: Representative feynman diagrams of h → f f̄ and its radiative corrections,
up to O(y2fα).

2.2 EW-loop decay

Besides the diagrams that is suppressed by the yukawa coupling, the decay of a
Higgs to a fermion pair and a photon can also be induced by electroweak loops.
Fig. 2 shows some representative 1-loop diagrams, which can be cast into 4 classes:

I. H → γZ∗ → f f̄γ;

II. H → γγ∗ → f f̄γ;

III. diagrams involving a Z box or a Z triangle with final state radiation;

IV. diagrams involving a W box or a W triangle with final state radiation.
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Figure 2: First row: representative diagrams that contribute to class I and II; second
row: representative diagrams that contribute to class III and IV.

We perform the calculation in the Feynman gauge. As a cross check, the analytic
results have been calculated and given in [7], where a non-linear Rξ gauge [8] was
used. All the diagrams are generated by FeynArts [9], and FeynCalc [10] is used to
simplify the amplitudes further. The numerical evaluation of all Passarino-Veltman
loop integrals are performed by LoopTools [11]. And we use Vegas [12] as the phase
space integrator.

2.3 Decay Width

The EW loops in Figs. 2 are UV-finite so that there is no need for renormaliztion,
as mentioned in Ref. [8]. However, in the massless limit mf → 0, the diagrams in
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Decay Widths
�(ff̄) O(y2f↵) O(y2t↵

3,↵4) �(ff̄�) Br(ff̄�)

[keV] [keV] [keV] [keV] [10�4]

b 1896 2.20 0.95 8.82 21.0

c 94.05 0.437 0.88 2.53 6.01

⌧ 261 2.72 0.30 10.3 24.5

µ 0.923 9.65⇥ 10�3 0.40 0.43 1.02

e 2.16⇥ 10�5 2.25⇥ 10�7 0.58 0.58 1.38
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where Qf is the electric charge of the fermion and Γ0 is the decay with of h → ff̄ at tree

level.

To compute the virtual correction, the renormalization of the Yukawa coupling is
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The virtual corrections come from the inteference between one-loop diagrams in Fig. 1b
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Setting the renormalization scale at µ = mh, the inclusive decay width up to O(y2fα)

is

Γtot = Γ0
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2.2 EW-loop decay

Besides the diagrams that is suppressed by the yukawa coupling, the decay of a Higgs to

a fermion pair and a photon can also be induced by electroweak loops. Fig. 2 shows some

representative 1-loop diagrams, which can be cast into 4 classes:

I. H → γZ∗ → ff̄γ;
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Inclusive QED
EW loops!
"Indirect"

"direct" + "indirect"!
with a hard isolated!
photon withwe also list the partial widths and braching ratios with a isolated hard photon emission

(Eγ > 5 GeV, and ∆Rfγ > 0.4) in the last two columns.

Decay Fermion mass Γ(ff̄) O(y2fα) O(y2tα
3,α4) Γ(ff̄γ) Br(ff̄γ)

Channel [GeV] [keV] [keV] [keV] [keV] [10−4]

h → bb̄γ 2.77 1896
1

2.20 0.95 8.82 21.0

h → cc̄γ 0.616 94.05
1

0.437 0.88 2.53 6.01

h → τ+τ−γ 1.78 261 2.72 0.30 10.3 24.5

h → µ+µ−γ 0.106 0.923 9.65× 10−3 0.40 0.43 1.02

h → e+e−γ 0.511× 10−3 2.16× 10−5 2.25× 10−7 0.58 0.58 1.38

Table 1: The decay widths of h → ff̄γ for quarks and charged leptons. The QED

corrections at O(yfα) and EW corrections at O(ytα3,α4) are listed. The widths and

branching ratios for the exclusive decay(Eγ > 5 GeV, and ∆Rfγ > 0.4) are shown in the

last two columns.

The numerical results shows that the decay rates via two mechanisms are comparable

in the c, b cases, and that the direct mechanism dominates in the τ case, so that we may

have a chance to probe the charm-, bottom- and tau-Yukawa coupling through the decay

h → ff̄γ. However, for the muon case where the indirect decay rate overwhelms the direct

ones, the rate of the radiative decays are still sizable and thus should be observable at

colliders, even though its Yukawa couplings is quite small. Actually the widths of radiative

decay h → µ+µ−γ and the decay h → µ+µ− are at the same order. In the electron case,

this phenomenon is even more significant. The decay rate of h → e+e−γ is about five order

of magnitude greater than the rate of h → e+e−. Therefore, despite the extremely small
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colliders.
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Here we also show the invariant mass distributions of the fermion pair and photon energy
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f have
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greatly reduce the contamination from the EW loops and isolate the Yukawa contribution
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we also list the partial widths and braching ratios with a isolated hard photon emission
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h → µ+µ−γ 0.106 0.923 9.65× 10−3 0.40 0.43 1.02
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II. H → γγ∗ → ff̄γ;

III. diagrams involving a Z box or a Z triangle with final state radiation;

IV. diagrams involving a W box or a W triangle with final state radiation.
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Figure 2: First row: representative diagrams that contribute to class I and II; second row:

representative diagrams that contribute to class III and IV.

We perform the calculation in the Feynman gauge. As a cross check, the analytic results

have been calculated and given in [7], where a non-linear Rξ gauge [8] was used. All

the diagrams are generated by FeynArts [9], and FeynCalc [10] is used to simplify the

amplitudes further. The numerical evaluation of all Passarino-Veltman loop integrals are

performed by LoopTools [11]. And we use Vegas [12] as the phase space integrator.

2.3 Decay Width

The EW loops in Figs. 2 are UV-finite so that there is no need for renormaliztion, as

mentioned in Ref. [8]. However, in the massless limit mf → 0, the diagrams in Figs. 2a and

2b diverge as the the invariant mass of the fermion pair approches the photon pole mff̄ →
0. Therefore the fermion mass needs to be used to regularized this divergent behavior

mff̄ > 4m2
f . The diagram in Fig. 2e also has soft divergence in principle. Nevertheless, in

the soft/collinear region, it has to be proportional to the fermion mass, and thus vanishes

in the massless limit. Besides, there is no interference between QED corrections and the

EW loop-induced decay, as they have different helicity configurations.

Since the QED corrections are suppressed by the Yukawa coupling, the decay rate

would be dominated by the EW loops for light fermions such as electron and light quarks.

Thus, to compare these two different decay mechanisms, we present the numerical results

in Tab. 1. Besides the QED corrections at O(yfα) and EW corrections at O(ytα3,α4),
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Probe the charm-Yukawa at LHC



Yukawa Couplings
❖ The Yukawa couplings to the 3rd generation has been measured 

through!

❖ Di-muon channel !

❖ Charm (or other light quarks)— many methods proposed.!

!

!

❖ Di-electron channel

h ! bb (2.6�) h ! ⌧⌧ (> 5�)tt̄h (4.4�)

h ! µµ < 3.5⇥ SM

h ! b¯b, cc̄ ) Stamou’s talk

h ! J/ � ) Alte’s talk W±h asymmetry ) Yu’s talk

Higgs kinematics ) Soreq’s talk

Global fit          Perez, et. al. arXiv: 1503.00290 etc.

h ! ee < 4⇥ 105 ⇥ SM



Charm-Yukawa via Radiative Decay

❖ Bound state to  open-flavor.!

❖ Larger branch ratio.!

!

!

!

❖ Require charm-tagging.

h

γ

h

γ

h

γ

γ/Z

Figure 2: Direct (left and center) and indirect (right) contributions to the h → V γ
decay amplitude. The crossed circle in the third diagram denotes the off-shell h → γγ∗

and h → γZ∗ amplitudes, which in the SM arise first at one-loop order.

of an off-shell photon or Z boson produced in a h → γγ∗/γZ∗ transition [10]. We refer to
this as the “indirect” contribution. It involves the hadronic matrix element of a local current
and thus can be expressed in terms of the decay constant fV of the vector meson. The direct
contribution is sensitive to the Yukawa coupling of the Higgs boson to the quarks which make
up the vector meson. We shall find that in the SM the direct and indirect contributions to
the h → V γ decay amplitude interfere destructively. They are of similar size for V = Υ,
while the direct contributions are smaller than the indirect ones by factors of about 0.06 for
V = J/ψ, 0.002 for V = φ, and few times 10−5 for V = ρ0 and ω. The sensitivity to the
Yukawa couplings thus crucially relies on the precision with which the indirect contributions
can be calculated. We will come back to this point below.

The most general parametrization of the h → V γ decay amplitude is

iA(h → V γ) = −
efV
2

[

(

ε∗V · ε∗γ −
q · ε∗V k · ε∗γ

k · q

)

F V
1 − iϵµναβ

kµqνε∗αV ε
∗β
γ

k · q
F V
2

]

, (5)

where both the final-state meson and the photon are transversely polarized. From (5), the
decay rate is obtained as

Γ(h → V γ) =
αf 2

V

8mh

(

∣

∣F V
1

∣

∣

2
+
∣

∣F V
2

∣

∣

2
)

. (6)

Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [22], as appropriate
for a real photon. We choose to normalize the decay amplitude in (5) to the vector-meson
decay constant fV , which is defined in terms of a matrix element of a local vector current.
Since we consider neutral, flavor-diagonal mesons, the definition of the decay constants (and
of other hadronic matrix elements) is complicated by the effects of flavor mixing. In complete
generality, such a neutral meson V can be regarded as a superposition of flavor states |qq̄⟩.
We can thus define flavor-dependent decay constants f q

V via

⟨V (k, ε)| q̄γµq |0⟩ = −if q
VmV ε

∗µ ; q = u, d, s, . . . . (7)

A certain combination of these flavor-specific decay constants can be measured in the leptonic
decay V → e+e−. The corresponding decay amplitude involves the matrix element of the

5
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Figure 1: Representative feynman diagrams of h → f f̄ and its radiative corrections,
up to O(y2fα).

2.2 EW-loop decay

Besides the diagrams that is suppressed by the yukawa coupling, the decay of a
Higgs to a fermion pair and a photon can also be induced by electroweak loops.
Fig. 2 shows some representative 1-loop diagrams, which can be cast into 4 classes:

I. H → γZ∗ → f f̄γ;

II. H → γγ∗ → f f̄γ;

III. diagrams involving a Z box or a Z triangle with final state radiation;

IV. diagrams involving a W box or a W triangle with final state radiation.
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Figure 2: First row: representative diagrams that contribute to class I and II; second
row: representative diagrams that contribute to class III and IV.

We perform the calculation in the Feynman gauge. As a cross check, the analytic
results have been calculated and given in [7], where a non-linear Rξ gauge [8] was
used. All the diagrams are generated by FeynArts [9], and FeynCalc [10] is used to
simplify the amplitudes further. The numerical evaluation of all Passarino-Veltman
loop integrals are performed by LoopTools [11]. And we use Vegas [12] as the phase
space integrator.

2.3 Decay Width

The EW loops in Figs. 2 are UV-finite so that there is no need for renormaliztion,
as mentioned in Ref. [8]. However, in the massless limit mf → 0, the diagrams in

4

3⇥ 10�6 ) 6⇥ 10�4



Charm Tagging

❖ Currently NO c-tagging.!

❖ Difficult. c-jets sit between b-
jets and light-jets.!

❖ Trade off between b- and light-
jets rejection.!

❖ ATLAS proposed an algorithm 
— JetFitterCharm.
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Figure 3: Dependence of the tagging e�ciencies on the jet transverse momentum (left) or pseudora-
pidity (right) for b-, c-, and light-flavour jets for the JetFitterCharm medium (top) and loose (bottom)
operating points. The medium and loose operating points were chosen to give an average c-tagging ef-
ficiency of ⇡ 20% and ⇡ 95%. The jets are from tt̄ simulated events generated with Powheg+Pythia6.

Figure 4: JetFitterCharm light-jet rejection versus c-tagging e�ciency, where the b-rejection (1/✏
b

) is
held fixed (left). Bottom rejection versus light rejection for constant charm-tagging e�ciency (right).
JetFitterCharm operating points select jets above a pair of thresholds in a 2-dimensional discriminant
plane, thus for any c-tagging e�ciency a range of b and light rejections are possible.
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Selection Cuts
❖ Higgs production via ggF at LO multiplied by K=2.7!

❖ Background                    at LO by Madgraph

pTc > 40(20) GeV

pT� > 20 GeV

|⌘� | < 2.5

�R > 0.4

100 < mcc� < 150 GeV

pp ! cc̄�



Charm-Yukawa

NSD =
Sp

S +B
' ✏c ⇥

2�direct + �indirectp
�bkg

p
L

If NP only modifies the charm-Yukawa, the statistical significance is
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Search for                  at the LHC`+`��



❖ In the SM,                         is not suppressed by their small Yukawa couplings. !

❖                                      and                                        are well separated in         ,!
 and thus are essentially different observables.!
!

❖  Different triggers and selection cuts.

Search for                  at the LHC`+`��
h ! `+`��

pp ! Z� ! `+`��pp ! �⇤� ! `+`�� m``

pp ! �⇤� ! ee�

mee < 1.5 GeV

|pTe+ |+ |pTe� | > 44 GeV

|⌘e| < 1.44

�Re� > 1

pT� > 0.3mee�

|⌘� | < 1.44

120 < mee� < 130 GeV

pp ! �⇤� ! µµ�

mµµ < 20 GeV

pTµ > 23(4) GeV

|⌘µ| < 2.4

�Rµ� > 1

pT� > 0.3mµµ�

|⌘� | < 1.44

120 < mµµ� < 130 GeV

pp ! Z� ! ``�

m`` > 50 GeV

pT ` > 20(10) GeV

|⌘µ,e| < 2.5, 2.4

�R`� > 0.4

pT� > 15 GeV

|⌘� | < 2.5 exclude (1.44, 1.57)

120 < m``� < 130

pT� > 15/110 ⇤m``�

m``� +m`` > 185 GeV



Search for                  at the LHC`+`��

Channel Signal Background Statistical Significance

[fb] [fb] with 0.3 (3) ab−1 luminosity

pp → Zγ → µ+µ−γ 1.40 214 1.66 (5.24)

pp → γ∗γ → µ+µ−γ 0.69 23.5 2.47 (7.79)

pp → Zγ → e+e−γ 1.38 224 1.60 (5.05)

pp → γ∗γ → e+e−γ 1.06 27.0 3.53 (11.2)

Table 2: The cross sections of signals and backgrounds, and the statistical significances

of pp → V γ → ℓ+ℓ−γ, V = Z, γ∗.

– pTγ > 15 GeV and |ηγ | < 1.37 or 1.52 < |ηγ | < 2.37

– ∆Rℓγ > 0.3? Xing: 0.4 is what I used

– mℓℓ > mZ − 10 GeV

– 115 < mℓℓγ < 170GeV Xing: (120,130) is what I used

σSig = 0.542 fb−1, σBkg = 169.9 fb−1, NSD = 0.72(2.28), for 300(3000) fb−1 luminosity

• Z-pole @ CMS

– pT ℓ,max > 20 GeV

pT ℓ,min > 10 GeV

– and |ηℓ| < 2.4

– pTγ > 15 GeV and |ηγ | < 1.44 or 1.57 < |ηγ | < 2.5

– ∆Rℓγ > 0.4

– mℓℓ > 50 GeV

– 110 < mℓℓγ < 190GeV and pTγ > 15/110 ∗mℓℓγ and mℓℓγ +mℓℓ > 185 GeV

Xing: mℓℓγ belongs (120,130) is what I used

σSig = 0.518 fb−1, σBkg = 152.8 fb−1, NSD = 0.73(2.30), for 300(3000) fb−1 luminosity

• γ-pole @ CMS

– |ηℓ| < 2.4

– |ηγ | < 1.44

– 11 –

LO ggF ⇥ K-factor
LO ⇥ K-factor for pp ! Z(�)�
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Conclusion

❖ Higgs radiative decay to a fermion pair is not 
necessarily suppressed by the yukawa coupling.!

❖ Interesting channel to observe at LHC.!

❖ With charm-tagging, it can be used to constrain the 
charm-yukawa.!

❖ Observability at LHC for leptons.



Thanks!


